The surge in applications of large language models (LLMs) has prompted concerns about the generation of misleading or fabricated information, known as hallucinations. Therefore, detecting hallucinations has become critical to maintaining trust in LLM-generated content. A primary challenge in learning a truthfulness classifier is the lack of a large amount of labeled truthful and hallucinated data. To address the challenge, we introduce HaloScope, a novel learning framework that leverages the unlabeled LLM generations in the wild for hallucination detection. Such unlabeled data arises freely upon deploying LLMs in the open world, and consists of both truthful and hallucinated information. To harness the unlabeled data, we present an automated membership estimation score for distinguishing between truthful and untruthful generations within unlabeled mixture data, thereby enabling the training of a binary truthfulness classifier on top. Importantly, our framework does not require extra data collection and human annotations, offering strong flexibility and practicality for real-world applications. Extensive experiments show that HaloScope can achieve superior hallucination detection performance, outperforming the competitive rivals by a significant margin. Code is available at //github.com/deeplearningwisc/haloscope.
Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.
The rise of large language models (LLMs) has significantly transformed both the construction and application of information retrieval (IR) systems. However, current interactions between IR systems and LLMs remain limited, with LLMs merely serving as part of components within IR systems, and IR systems being constructed independently of LLMs. This separated architecture restricts knowledge sharing and deep collaboration between them. In this paper, we introduce Self-Retrieval, a novel end-to-end LLM-driven information retrieval architecture. Self-Retrieval unifies all essential IR functions within a single LLM, leveraging the inherent capabilities of LLMs throughout the IR process. Specifically, Self-Retrieval internalizes the retrieval corpus through self-supervised learning, transforms the retrieval process into sequential passage generation, and performs relevance assessment for reranking. Experimental results demonstrate that Self-Retrieval not only outperforms existing retrieval approaches by a significant margin, but also substantially enhances the performance of LLM-driven downstream applications like retrieval-augmented generation.
Large language models (LLMs) have achieved unprecedented performances in various applications, yet evaluating them is still challenging. Existing benchmarks are either manually constructed or are automatic, but lack the ability to evaluate the thought process of LLMs with arbitrary complexity. We contend that utilizing existing relational databases based on the entity-relationship (ER) model is a promising approach for constructing benchmarks as they contain structured knowledge that can be used to question LLMs. Unlike knowledge graphs, which are also used to evaluate LLMs, relational databases have integrity constraints that can be used to better construct complex in-depth questions and verify answers: (1) functional dependencies can be used to pinpoint critical keywords that an LLM must know to properly answer a given question containing certain attribute values; and (2) foreign key constraints can be used to join relations and construct multi-hop questions, which can be arbitrarily long and used to debug intermediate answers. We thus propose ERBench, which uses these integrity constraints to convert any database into an LLM benchmark. ERBench supports continuous evaluation as databases change, multimodal questions, and various prompt engineering techniques. In our experiments, we construct LLM benchmarks using databases of multiple domains and make an extensive comparison of contemporary LLMs. We show how ERBench can properly evaluate any LLM by not only checking for answer correctness, but also effectively verifying the rationales by looking for the right keywords.
In recent years, the remarkable progress of large language models (LLMs) has sparked interest in task automation, which involves decomposing complex tasks described by user instructions into sub-tasks and invoking external tools to execute them, playing a central role in autonomous agents. However, there is a lack of systematic and standardized benchmarks to promote the development of LLMs in task automation. To address this, we introduce TaskBench, a comprehensive framework to evaluate the capability of LLMs in task automation. Specifically, task automation can be divided into three critical stages: task decomposition, tool selection, and parameter prediction. To tackle the complexities inherent in these stages, we introduce the concept of Tool Graph to represent decomposed tasks and adopt a back-instruct method to generate high-quality user instructions. We propose TaskEval, a multi-faceted evaluation methodology that assesses LLM performance across these three stages. Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation. Experimental results demonstrate that TaskBench effectively reflects the capabilities of various LLMs in task automation. It provides insights into model performance across different task complexities and domains, pushing the boundaries of what current models can achieve. TaskBench offers a scalable, adaptable, and reliable benchmark for advancing LLM-based autonomous agents.
Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from \textit{capability} to \textit{availability}, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce \textbf{BitStack}, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at //github.com/xinghaow99/BitStack.
The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it - including the pipeline, language identification model, and filters - available to the research community. Corpus v. 1.0 //huggingface.co/datasets/cis-lmu/GlotCC-v1, Pipeline v. 3.0 //github.com/cisnlp/GlotCC.
Although large language models (LLMs) have demonstrated their strong intelligence ability, the high demand for computation and storage hinders their practical application. To this end, many model compression techniques are proposed to increase the efficiency of LLMs. However, current researches only validate their methods on limited models, datasets, metrics, etc, and still lack a comprehensive evaluation under more general scenarios. So it is still a question of which model compression approach we should use under a specific case. To mitigate this gap, we present the Large Language Model Compression Benchmark (LLMCBench), a rigorously designed benchmark with an in-depth analysis for LLM compression algorithms. We first analyze the actual model production requirements and carefully design evaluation tracks and metrics. Then, we conduct extensive experiments and comparison using multiple mainstream LLM compression approaches. Finally, we perform an in-depth analysis based on the evaluation and provide useful insight for LLM compression design. We hope our LLMCBench can contribute insightful suggestions for LLM compression algorithm design and serve as a foundation for future research. Our code is available at //github.com/AboveParadise/LLMCBench.
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.