亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-supervised representation learning has seen remarkable progress in the last few years, with some of the recent methods being able to learn useful image representations without labels. These methods are trained using backpropagation, the de facto standard. Recently, Geoffrey Hinton proposed the forward-forward algorithm as an alternative training method. It utilizes two forward passes and a separate loss function for each layer to train the network without backpropagation. In this study, for the first time, we study the performance of forward-forward vs. backpropagation for self-supervised representation learning and provide insights into the learned representation spaces. Our benchmark employs four standard datasets, namely MNIST, F-MNIST, SVHN and CIFAR-10, and three commonly used self-supervised representation learning techniques, namely rotation, flip and jigsaw. Our main finding is that while the forward-forward algorithm performs comparably to backpropagation during (self-)supervised training, the transfer performance is significantly lagging behind in all the studied settings. This may be caused by a combination of factors, including having a loss function for each layer and the way the supervised training is realized in the forward-forward paradigm. In comparison to backpropagation, the forward-forward algorithm focuses more on the boundaries and drops part of the information unnecessary for making decisions which harms the representation learning goal. Further investigation and research are necessary to stabilize the forward-forward strategy for self-supervised learning, to work beyond the datasets and configurations demonstrated by Geoffrey Hinton.

相關內容

Deep learning has revolutionized various real-world applications, but the quality of Deep Neural Networks (DNNs) remains a concern. DNNs are complex and have millions of parameters, making it difficult to determine their contributions to fulfilling a task. Moreover, the behavior of a DNN is highly influenced by the data used during training, making it challenging to collect enough data to exercise all potential DNN behavior under all possible scenarios. This paper proposes NP SBFL method to locate faulty neural pathways (NP) using spectrum-based fault localization (SBFL). Our method identifies critical neurons using the layer-wise relevance propagation (LRP) technique and determines which critical neurons are faulty. Moreover, we propose a multi-stage gradient ascent (MGA), an extension of gradient ascent (GA), to effectively activate a sequence of neurons one at a time while maintaining the activation of previous neurons, so we are able to test the reported faulty pathways. We evaluated the effectiveness of our method, i.e. NP-SBFL-MGA, on two commonly used datasets, MNIST and CIFAR-10, two baselines DeepFault and NP-SBFL-GA, and three suspicious neuron measures, Tarantula, Ochiai, and Barinel. The empirical results showed that NP-SBFL-MGA is statistically more effective than the baselines at identifying suspicious paths and synthesizing adversarial inputs. Particularly, Tarantula on NP-SBFL-MGA had the highest fault detection rate at 96.75%, surpassing DeepFault on Ochiai (89.90%) and NP-SBFL-GA on Ochiai (60.61%). Our approach also yielded comparable results to the baselines in synthesizing naturalness inputs, and we found a positive correlation between the coverage of critical paths and the number of failed tests in DNN fault localization.

Modern policy optimization methods in reinforcement learning, such as TRPO and PPO, owe their success to the use of parameterized policies. However, while theoretical guarantees have been established for this class of algorithms, especially in the tabular setting, the use of general parameterization schemes remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parameterizations. The policy class induced by our scheme recovers known classes, e.g., softmax, and generates new ones depending on the choice of mirror map. Using our framework, we obtain the first result that guarantees linear convergence for a policy-gradient-based method involving general parameterization. To demonstrate the ability of our framework to accommodate general parameterization schemes, we provide its sample complexity when using shallow neural networks, show that it represents an improvement upon the previous best results, and empirically validate the effectiveness of our theoretical claims on classic control tasks.

We propose a new sequential decision-making setting, combining key aspects of two established online learning problems with bandit feedback. The optimal action to play at any given moment is contingent on an underlying changing state which is not directly observable by the agent. Each state is associated with a context distribution, possibly corrupted, allowing the agent to identify the state. Furthermore, states evolve in a Markovian fashion, providing useful information to estimate the current state via state history. In the proposed problem setting, we tackle the challenge of deciding on which of the two sources of information the agent should base its arm selection. We present an algorithm that uses a referee to dynamically combine the policies of a contextual bandit and a multi-armed bandit. We capture the time-correlation of states through iteratively learning the action-reward transition model, allowing for efficient exploration of actions. Our setting is motivated by adaptive mobile health (mHealth) interventions. Users transition through different, time-correlated, but only partially observable internal states, determining their current needs. The side information associated with each internal state might not always be reliable, and standard approaches solely rely on the context risk of incurring high regret. Similarly, some users might exhibit weaker correlations between subsequent states, leading to approaches that solely rely on state transitions risking the same. We analyze our setting and algorithm in terms of regret lower bound and upper bounds and evaluate our method on simulated medication adherence intervention data and several real-world data sets, showing improved empirical performance compared to several popular algorithms.

Recent advances in vision-language learning have achieved notable success on complete-information question-answering datasets through the integration of extensive world knowledge. Yet, most models operate passively, responding to questions based on pre-stored knowledge. In stark contrast, humans possess the ability to actively explore, accumulate, and reason using both newfound and existing information to tackle incomplete-information questions. In response to this gap, we introduce $Conan$, an interactive open-world environment devised for the assessment of active reasoning. $Conan$ facilitates active exploration and promotes multi-round abductive inference, reminiscent of rich, open-world settings like Minecraft. Diverging from previous works that lean primarily on single-round deduction via instruction following, $Conan$ compels agents to actively interact with their surroundings, amalgamating new evidence with prior knowledge to elucidate events from incomplete observations. Our analysis on $Conan$ underscores the shortcomings of contemporary state-of-the-art models in active exploration and understanding complex scenarios. Additionally, we explore Abduction from Deduction, where agents harness Bayesian rules to recast the challenge of abduction as a deductive process. Through $Conan$, we aim to galvanize advancements in active reasoning and set the stage for the next generation of artificial intelligence agents adept at dynamically engaging in environments.

Contrastive representation learning has emerged as a promising technique for continual learning as it can learn representations that are robust to catastrophic forgetting and generalize well to unseen future tasks. Previous work in continual learning has addressed forgetting by using previous task data and trained models. Inspired by event models created and updated in the brain, we propose a new mechanism that takes place during task boundaries, i.e., when one task finishes and another starts. By observing the redundancy-inducing ability of contrastive loss on the output of a neural network, our method leverages the first few samples of the new task to identify and retain parameters contributing most to the transfer ability of the neural network, freeing up the remaining parts of the network to learn new features. We evaluate the proposed methods on benchmark computer vision datasets including CIFAR10 and TinyImagenet and demonstrate state-of-the-art performance in the task-incremental, class-incremental, and domain-incremental continual learning scenarios.

While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司