亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in large language models (LLMs) have revolutionized code intelligence by improving programming productivity and alleviating challenges faced by software developers. To further improve the performance of LLMs on specific code intelligence tasks and reduce training costs, researchers reveal a new capability of LLMs: in-context learning (ICL). ICL allows LLMs to learn from a few demonstrations within a specific context, achieving impressive results without parameter updating. However, the rise of ICL introduces new security vulnerabilities in the code intelligence field. In this paper, we explore a novel security scenario based on the ICL paradigm, where attackers act as third-party ICL agencies and provide users with bad ICL content to mislead LLMs outputs in code intelligence tasks. Our study demonstrates the feasibility and risks of such a scenario, revealing how attackers can leverage malicious demonstrations to construct bad ICL content and induce LLMs to produce incorrect outputs, posing significant threats to system security. We propose a novel method to construct bad ICL content called DICE, which is composed of two stages: Demonstration Selection and Bad ICL Construction, constructing targeted bad ICL content based on the user query and transferable across different query inputs. Ultimately, our findings emphasize the critical importance of securing ICL mechanisms to protect code intelligence systems from adversarial manipulation.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

Recent advances have demonstrated that large language models (LLMs) excel as listwise rerankers, but their high computational demands remain a barrier to widespread adoption. Further, the traditional language modeling (LM) objective is not ideally suited for reranking tasks. FIRST is a novel approach that addresses these challenges by integrating a learning-to-rank objective and leveraging the logits of only the first generated token, thereby significantly reducing inference latency compared to traditional LLM rerankers. In this study, we extend the evaluation of FIRST to the TREC Deep Learning datasets (DL19-22), validating its robustness across diverse domains. We investigate the influence of different first-stage retrievers on FIRST rerankers, observing diminishing returns and patterns consistent with traditional LLM rerankers. Through applying the FIRST objective to a broader range of backbone models, we achieve effectiveness surpassing the original implementation. Our experiments confirm that fast reranking with single-token logits does not compromise out-of-domain reranking quality. To better quantify the computational savings in the original study, we measure and compare latency to find a 21%-42% gain across various models and benchmarks. Moreover, while LM training implicitly improves zero-shot single-token reranking, our experiments also raise questions about whether LM pre-training may hinder subsequent fine-tuning with the FIRST objective. These findings pave the way for more efficient and effective listwise reranking in future applications.

Large language models have driven significant progress in natural language processing, but their deployment requires substantial compute and memory resources. As models scale, compression techniques become essential for balancing model quality with computational efficiency. Structured pruning, which removes less critical components of the model, is a promising strategy for reducing complexity. However, one-shot pruning often results in significant quality degradation, particularly in tasks requiring multi-step reasoning. To recover lost quality, supervised fine-tuning (SFT) is commonly applied, but it can lead to catastrophic forgetting by shifting the model's learned data distribution. Therefore, addressing the degradation from both pruning and SFT is essential to preserve the original model's quality. In this work, we utilize self-data distilled fine-tuning to address these challenges. Our approach leverages the original, unpruned model to generate a distilled dataset that preserves semantic richness and mitigates catastrophic forgetting by maintaining alignment with the base model's knowledge. Empirically, we demonstrate that self-data distillation consistently outperforms standard SFT, improving average accuracy by up to 8% on the HuggingFace OpenLLM Leaderboard v1. Specifically, when pruning six decoder blocks on Llama3.1-8B Instruct (i.e., 32 to 26 layers, reducing the model size from 8.03B to 6.72B parameters), our method retains 91.2% of the original model's accuracy compared to 81.7% with SFT, while reducing real-world FLOPs by 16.3%. Furthermore, combining self-data distilled models through model merging yields enhanced quality retention. Additionally, leveraging these pruned models in speculative decoding increases token acceptance rates, thereby improving inference efficiency in applied settings.

Large language models (LLMs) have achieved impressive performance in code generation recently, offering programmers revolutionary assistance in software development. However, due to the auto-regressive nature of LLMs, they are susceptible to error accumulation during code generation. Once an error is produced, LLMs can merely continue to generate the subsequent code conditioned on it, given their inability to adjust previous outputs. Existing LLM-based approaches typically consider post-revising after code generation, leading to the challenging resolution of accumulated errors and the significant wastage of resources. Ideally, LLMs should rollback and resolve the occurred error in time during code generation, rather than proceed on the basis of the error and wait for post-revising after generation. In this paper, we propose ROCODE, which integrates the backtracking mechanism and program analysis into LLMs for code generation. Specifically, we employ program analysis to perform incremental error detection during the generation process. When an error is detected, the backtracking mechanism is triggered to priming rollback strategies and constraint regeneration, thereby eliminating the error early and ensuring continued generation on the correct basis. Experiments on multiple code generation benchmarks show that ROCODE can significantly reduce the errors generated by LLMs, with a compilation pass rate of 99.1%. The test pass rate is improved by up to 23.8% compared to the best baseline approach. Compared to the post-revising baseline, the token cost is reduced by 19.3%. Moreover, our approach is model-agnostic and achieves consistent improvements across nine representative LLMs.

Recent models for natural language understanding are inclined to exploit simple patterns in datasets, commonly known as shortcuts. These shortcuts hinge on spurious correlations between labels and latent features existing in the training data. At inference time, shortcut-dependent models are likely to generate erroneous predictions under distribution shifts, particularly when some latent features are no longer correlated with the labels. To avoid this, previous studies have trained models to eliminate the reliance on shortcuts. In this study, we explore a different direction: pessimistically aggregating the predictions of a mixture-of-experts, assuming each expert captures relatively different latent features. The experimental results demonstrate that our post-hoc control over the experts significantly enhances the model's robustness to the distribution shift in shortcuts. Besides, we show that our approach has some practical advantages. We also analyze our model and provide results to support the assumption.

The goal of multi-objective optimization (MOO) is to learn under multiple, potentially conflicting, objectives. One widely used technique to tackle MOO is through linear scalarization, where one fixed preference vector is used to combine the objectives into a single scalar value for optimization. However, recent work (Hu et al., 2024) has shown linear scalarization often fails to capture the non-convex regions of the Pareto Front, failing to recover the complete set of Pareto optimal solutions. In light of the above limitations, this paper focuses on Tchebycheff scalarization that optimizes for the worst-case objective. In particular, we propose an online mirror descent algorithm for Tchebycheff scalarization, which we call OMD-TCH. We show that OMD-TCH enjoys a convergence rate of $O(\sqrt{\log m/T})$ where $m$ is the number of objectives and $T$ is the number of iteration rounds. We also propose a novel adaptive online-to-batch conversion scheme that significantly improves the practical performance of OMD-TCH while maintaining the same convergence guarantees. We demonstrate the effectiveness of OMD-TCH and the adaptive conversion scheme on both synthetic problems and federated learning tasks under fairness constraints, showing state-of-the-art performance.

Pre-trained language models have profoundly impacted the field of extractive question-answering, leveraging large-scale textual corpora to enhance contextual language understanding. Despite their success, these models struggle in complex scenarios that demand nuanced interpretation or inferential reasoning beyond immediate textual cues. Furthermore, their size poses deployment challenges on resource-constrained devices. Addressing these limitations, we introduce an adapted two-stage Learning-to-Defer mechanism that enhances decision-making by enabling selective deference to human experts or larger models without retraining language models in the context of question-answering. This approach not only maintains computational efficiency but also significantly improves model reliability and accuracy in ambiguous contexts. We establish the theoretical soundness of our methodology by proving Bayes and $(\mathcal{H}, \mathcal{R})$--consistency of our surrogate loss function, guaranteeing the optimality of the final solution. Empirical evaluations on the SQuADv2 dataset illustrate performance gains from integrating human expertise and leveraging larger models. Our results further demonstrate that deferring a minimal number of queries allows the smaller model to achieve performance comparable to their larger counterparts while preserving computing efficiency, thus broadening the applicability of pre-trained language models in diverse operational environments.

Although pretrained large language models (PLMs) have achieved state-of-the-art on many natural language processing (NLP) tasks, they lack an understanding of subtle expressions of implicit hate speech. Various attempts have been made to enhance the detection of implicit hate by augmenting external context or enforcing label separation via distance-based metrics. Combining these two approaches, we introduce FiADD, a novel Focused Inferential Adaptive Density Discrimination framework. FiADD enhances the PLM finetuning pipeline by bringing the surface form/meaning of an implicit hate speech closer to its implied form while increasing the inter-cluster distance among various labels. We test FiADD on three implicit hate datasets and observe significant improvement in the two-way and three-way hate classification tasks. We further experiment on the generalizability of FiADD on three other tasks, detecting sarcasm, irony, and stance, in which surface and implied forms differ, and observe similar performance improvements. Consequently, we analyze the generated latent space to understand its evolution under FiADD, which corroborates the advantage of employing FiADD for implicit hate speech detection.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司