亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The robustness of SLAM (Simultaneous Localization and Mapping) algorithms under challenging environmental conditions is critical for the success of autonomous driving. However, the real-world impact of such conditions remains largely unexplored due to the difficulty of altering environmental parameters in a controlled manner. To address this, we introduce CARLA-Loc, a synthetic dataset designed for challenging and dynamic environments, created using the CARLA simulator. Our dataset integrates a variety of sensors, including cameras, event cameras, LiDAR, radar, and IMU, etc. with tuned parameters and modifications to ensure the realism of the generated data. CARLA-Loc comprises 7 maps and 42 sequences, each varying in dynamics and weather conditions. Additionally, a pipeline script is provided that allows users to generate custom sequences conveniently. We evaluated 5 visual-based and 4 LiDAR-based SLAM algorithms across different sequences, analyzing how various challenging environmental factors influence localization accuracy. Our findings demonstrate the utility of the CARLA-Loc dataset in validating the efficacy of SLAM algorithms under diverse conditions.

相關內容

The concept of Digital Twin (DT) is increasingly applied to systems on different levels of abstraction across domains, to support monitoring, analysis, diagnosis, decision making and automated control. Whilst the interest in applying DT is growing, the definition of DT is unclear, neither is there a clear pathway to develop DT to fully realise its capacities. In this paper, we revise the concept of DT and its categorisation. We propose a DT maturity matrix, based on which we propose a model-based DT development methodology. We also discuss how model-based tools can be used to support the methodology and present our own supporting tool. We report our preliminary findings with a discussion on a case study, in which we use our proposed methodology and our supporting tool to develop an extensible DT platform for the assurance of Electrical and Electronics systems of space launch vehicles.

Although recent generative image compression methods have demonstrated impressive potential in optimizing the rate-distortion-perception trade-off, they still face the critical challenge of flexible rate adaption to diverse compression necessities and scenarios. To overcome this challenge, this paper proposes a Controllable Generative Image Compression framework, Control-GIC, the first capable of fine-grained bitrate adaption across a broad spectrum while ensuring high-fidelity and generality compression. We base Control-GIC on a VQGAN framework representing an image as a sequence of variable-length codes (i.e. VQ-indices), which can be losslessly compressed and exhibits a direct positive correlation with the bitrates. Therefore, drawing inspiration from the classical coding principle, we naturally correlate the information density of local image patches with their granular representations, to achieve dynamic adjustment of the code quantity following different granularity decisions. This implies we can flexibly determine a proper allocation of granularity for the patches to acquire desirable compression rates. We further develop a probabilistic conditional decoder that can trace back to historic encoded multi-granularity representations according to transmitted codes, and then reconstruct hierarchical granular features in the formalization of conditional probability, enabling more informative aggregation to improve reconstruction realism. Our experiments show that Control-GIC allows highly flexible and controllable bitrate adaption and even once compression on an entire dataset to fulfill constrained bitrate conditions. Experimental results demonstrate its superior performance over recent state-of-the-art methods.

The effectiveness of Intrusion Detection Systems (IDS) is critical in an era where cyber threats are becoming increasingly complex. Machine learning (ML) and deep learning (DL) models provide an efficient and accurate solution for identifying attacks and anomalies in computer networks. However, using ML and DL models in IDS has led to a trust deficit due to their non-transparent decision-making. This transparency gap in IDS research is significant, affecting confidence and accountability. To address, this paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data, while also adapting a new Explainable AI (XAI) methodology. Unlike most GNN-based IDS that depend on labeled network traffic and node features, thereby overlooking critical packet-level information, our approach leverages a broader range of traffic data through network flows, including edge attributes, to improve detection capabilities and adapt to novel threats. Through empirical testing, we establish that our approach not only achieves high accuracy with 99.47% in threat detection but also advances the field by providing clear, actionable explanations of its analytical outcomes. This research also aims to bridge the current gap and facilitate the broader integration of ML/DL technologies in cybersecurity defenses by offering a local and global explainability solution that is both precise and interpretable.

Transparency rendering is problematic and can be considered an open problem in real-time graphics. There are many different algorithms currently available, but handling complex scenes and achieving accurate, glitch-free results is still costly. This paper describes LucidRaster: a software rasterizer running on a GPU which allows for efficient exact rendering of complex transparent scenes. It uses a new two-stage sorting technique and sample accumulation method. On average it's faster than high-quality OIT approximations and only about 3x slower than hardware alpha blending. It can be very efficient especially when rendering scenes with high triangle density or high depth complexity.

Effectively analyzing the comments to uncover latent intentions holds immense value in making strategic decisions across various domains. However, several challenges hinder the process of sentiment analysis including the lexical diversity exhibited in comments, the presence of long dependencies within the text, encountering unknown symbols and words, and dealing with imbalanced datasets. Moreover, existing sentiment analysis tasks mostly leveraged sequential models to encode the long dependent texts and it requires longer execution time as it processes the text sequentially. In contrast, the Transformer requires less execution time due to its parallel processing nature. In this work, we introduce a novel hybrid deep learning model, RoBERTa-BiLSTM, which combines the Robustly Optimized BERT Pretraining Approach (RoBERTa) with Bidirectional Long Short-Term Memory (BiLSTM) networks. RoBERTa is utilized to generate meaningful word embedding vectors, while BiLSTM effectively captures the contextual semantics of long-dependent texts. The RoBERTa-BiLSTM hybrid model leverages the strengths of both sequential and Transformer models to enhance performance in sentiment analysis. We conducted experiments using datasets from IMDb, Twitter US Airline, and Sentiment140 to evaluate the proposed model against existing state-of-the-art methods. Our experimental findings demonstrate that the RoBERTa-BiLSTM model surpasses baseline models (e.g., BERT, RoBERTa-base, RoBERTa-GRU, and RoBERTa-LSTM), achieving accuracies of 80.74%, 92.36%, and 82.25% on the Twitter US Airline, IMDb, and Sentiment140 datasets, respectively. Additionally, the model achieves F1-scores of 80.73%, 92.35%, and 82.25% on the same datasets, respectively.

This paper presents an efficient algorithm, naming Centralized Searching and Decentralized Optimization (CSDO), to find feasible solution for large-scale Multi-Vehicle Trajectory Planning (MVTP) problem. Due to the intractable growth of non-convex constraints with the number of agents, exploring various homotopy classes that imply different convex domains, is crucial for finding a feasible solution. However, existing methods struggle to explore various homotopy classes efficiently due to combining it with time-consuming precise trajectory solution finding. CSDO, addresses this limitation by separating them into different levels and integrating an efficient Multi-Agent Path Finding (MAPF) algorithm to search homotopy classes. It first searches for a coarse initial guess using a large search step, identifying a specific homotopy class. Subsequent decentralized Quadratic Programming (QP) refinement processes this guess, resolving minor collisions efficiently. Experimental results demonstrate that CSDO outperforms existing MVTP algorithms in large-scale, high-density scenarios, achieving up to 95% success rate in 50m $\times$ 50m random scenarios around one second. Source codes are released in //github.com/YangSVM/CSDOTrajectoryPlanning.

Expressive speech-to-speech translation (S2ST) is a key research topic in seamless communication, which focuses on the preservation of semantics and speaker vocal style in translated speech. Early works synthesized speaker style aligned speech in order to directly learn the mapping from speech to target speech spectrogram. Without reliance on style aligned data, recent studies leverage the advances of language modeling (LM) and build cascaded LMs on semantic and acoustic tokens. This work proposes SeamlessExpressiveLM, a single speech language model for expressive S2ST. We decompose the complex source-to-target speech mapping into intermediate generation steps with chain-of-thought prompting. The model is first guided to translate target semantic content and then transfer the speaker style to multi-stream acoustic units. Evaluated on Spanish-to-English and Hungarian-to-English translations, SeamlessExpressiveLM outperforms cascaded LMs in both semantic quality and style transfer, meanwhile achieving better parameter efficiency.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司