亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate delineation of tumor-adjacent functional brain regions is essential for planning function-preserving neurosurgery. Functional magnetic resonance imaging (fMRI) is increasingly used for presurgical counseling and planning. When analyzing presurgical fMRI data, false negatives are more dangerous to the patients than false positives because patients are more likely to experience significant harm from failing to identify functional regions and subsequently resecting critical tissues. In this paper, we propose a novel spatially adaptive variable screening procedure to enable effective control of false negatives while leveraging the spatial structure of fMRI data. Compared to existing statistical methods in fMRI data analysis, the new procedure directly controls false negatives at a desirable level and is completely data-driven. The new method is also substantially different from existing false-negative control procedures which do not take spatial information into account. Numerical examples show that the new method outperforms several state-of-the-art methods in retaining signal voxels, especially the subtle ones at the boundaries of functional regions, while providing cleaner separation of functional regions from background noise. Such results could be valuable to preserve critical tissues in neurosurgery.

相關內容

Language models (LMs) have already demonstrated remarkable abilities in understanding and generating both natural and formal language. Despite these advances, their integration with real-world environments such as large-scale knowledge bases (KBs) remains an underdeveloped area, affecting applications such as semantic parsing and indulging in "hallucinated" information. This paper is an experimental investigation aimed at uncovering the robustness challenges that LMs encounter when tasked with knowledge base question answering (KBQA). The investigation covers scenarios with inconsistent data distribution between training and inference, such as generalization to unseen domains, adaptation to various language variations, and transferability across different datasets. Our comprehensive experiments reveal that even when employed with our proposed data augmentation techniques, advanced small and large language models exhibit poor performance in various dimensions. While the LM is a promising technology, the robustness of the current form in dealing with complex environments is fragile and of limited practicality because of the data distribution issue. This calls for future research on data collection and LM learning paradims.

We consider applications of neural networks in nonlinear system identification and formulate a hypothesis that adjusting general network structure by incorporating frequency information or other known orthogonal transform, should result in an efficient neural network retaining its universal properties. We show that such a structure is a universal approximator and that using any orthogonal transform in a proposed way implies regularization during training by adjusting the learning rate of each parameter individually. We empirically show in particular, that such a structure, using the Fourier transform, outperforms equivalent models without orthogonality support.

We present effective procedures to calculate regular normal cones and other related objects using quantifier elimination. This method of normal cone calculations is complementary to computing Lagrangians and it works best at points where the constraint qualifications fail and extra work for other methods becomes inevitable. This method also serves as a tool to calculate the regular co-derivative for semismooth* Newton methods. We list algorithms and their demonstrations of different use cases for this approach.

The primary objective of this work is to present an alternative approach aimed at reducing the dependency on labeled data. Our proposed method involves utilizing autoencoder pre-training within a face image recognition task with two step processes. Initially, an autoencoder is trained in an unsupervised manner using a substantial amount of unlabeled training dataset. Subsequently, a deep learning model is trained with initialized parameters from the pre-trained autoencoder. This deep learning training process is conducted in a supervised manner, employing relatively limited labeled training dataset. During evaluation phase, face image embeddings is generated as the output of deep neural network layer. Our training is executed on the CelebA dataset, while evaluation is performed using benchmark face recognition datasets such as Labeled Faces in the Wild (LFW) and YouTube Faces (YTF). Experimental results demonstrate that by initializing the deep neural network with pre-trained autoencoder parameters achieve comparable results to state-of-the-art methods.

The success of deep learning comes at a tremendous computational and energy cost, and the scalability of training massively overparametrized neural networks is becoming a real barrier to the progress of artificial intelligence (AI). Despite the popularity and low cost-per-iteration of traditional backpropagation via gradient decent, stochastic gradient descent (SGD) has prohibitive convergence rate in non-convex settings, both in theory and practice. To mitigate this cost, recent works have proposed to employ alternative (Newton-type) training methods with much faster convergence rate, albeit with higher cost-per-iteration. For a typical neural network with $m=\mathrm{poly}(n)$ parameters and input batch of $n$ datapoints in $\mathbb{R}^d$, the previous work of [Brand, Peng, Song, and Weinstein, ITCS'2021] requires $\sim mnd + n^3$ time per iteration. In this paper, we present a novel training method that requires only $m^{1-\alpha} n d + n^3$ amortized time in the same overparametrized regime, where $\alpha \in (0.01,1)$ is some fixed constant. This method relies on a new and alternative view of neural networks, as a set of binary search trees, where each iteration corresponds to modifying a small subset of the nodes in the tree. We believe this view would have further applications in the design and analysis of deep neural networks (DNNs).

Optimal transport aims to learn a mapping of sources to targets by minimizing the cost, which is typically defined as a function of distance. The solution to this problem consists of straight line segments optimally connecting sources to targets, and it does not exhibit branching. These optimal solutions are in stark contrast with both natural, and man-made transportation networks, where branching structures are prevalent. Here we discuss a fast heuristic branching method for optimal transport in networks. We also provide several numerical applications to synthetic examples, a simplified cardiovascular network, and the "Santa Claus" distribution network which includes 141,182 cities around the world, with known location and population.

The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.

High-dimensional problems have long been considered the Achilles' heel of Bayesian optimization algorithms. Spurred by the curse of dimensionality, a large collection of algorithms aim to make it more performant in this setting, commonly by imposing various simplifying assumptions on the objective. In this paper, we identify the degeneracies that make vanilla Bayesian optimization poorly suited to high-dimensional tasks, and further show how existing algorithms address these degeneracies through the lens of lowering the model complexity. Moreover, we propose an enhancement to the prior assumptions that are typical to vanilla Bayesian optimization algorithms, which reduces the complexity to manageable levels without imposing structural restrictions on the objective. Our modification - a simple scaling of the Gaussian process lengthscale prior with the dimensionality - reveals that standard Bayesian optimization works drastically better than previously thought in high dimensions, clearly outperforming existing state-of-the-art algorithms on multiple commonly considered real-world high-dimensional tasks.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

北京阿比特科技有限公司