亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As AI technologies are rolled out into healthcare, academia, human resources, law, and a multitude of other domains, they become de-facto arbiters of truth. But truth is highly contested, with many different definitions and approaches. This article discusses the struggle for truth in AI systems and the general responses to date. It then investigates the production of truth in InstructGPT, a large language model, highlighting how data harvesting, model architectures, and social feedback mechanisms weave together disparate understandings of veracity. It conceptualizes this performance as an operationalization of truth, where distinct, often conflicting claims are smoothly synthesized and confidently presented into truth-statements. We argue that these same logics and inconsistencies play out in Instruct's successor, ChatGPT, reiterating truth as a non-trivial problem. We suggest that enriching sociality and thickening "reality" are two promising vectors for enhancing the truth-evaluating capacities of future language models. We conclude, however, by stepping back to consider AI truth-telling as a social practice: what kind of "truth" do we as listeners desire?

相關內容

This work introduces the notion of intermediate concepts based on levels structure to aid explainability for black-box models. The levels structure is a hierarchical structure in which each level corresponds to features of a dataset (i.e., a player-set partition). The level of coarseness increases from the trivial set, which only comprises singletons, to the set, which only contains the grand coalition. In addition, it is possible to establish meronomies, i.e., part-whole relationships, via a domain expert that can be utilised to generate explanations at an abstract level. We illustrate the usability of this approach in a real-world car model example and the Titanic dataset, where intermediate concepts aid in explainability at different levels of abstraction.

ChatGPT is a publicly available chatbot that can quickly generate texts on given topics, but it is unknown whether the chatbot is really superior to human writers in all aspects of writing and whether its writing quality can be prominently improved on the basis of updating commands. Consequently, this study compared the writing performance on a narrative topic by ChatGPT and Chinese intermediate English (CIE) learners so as to reveal the chatbot's advantage and disadvantage in writing. The data were analyzed in terms of five discourse components using Coh-Metrix (a special instrument for analyzing language discourses), and the results revealed that ChatGPT performed better than human writers in narrativity, word concreteness, and referential cohesion, but worse in syntactic simplicity and deep cohesion in its initial version. After more revision commands were updated, while the resulting version was facilitated in syntactic simplicity, yet it is still lagged far behind CIE learners' writing in deep cohesion. In addition, the correlation analysis of the discourse components suggests that narrativity was correlated with referential cohesion in both ChatGPT and human writers, but the correlations varied within each group.

Structured knowledge bases (KBs) are a foundation of many intelligent applications, yet are notoriously incomplete. Language models (LMs) have recently been proposed for unsupervised knowledge base completion (KBC), yet, despite encouraging initial results, questions regarding their suitability remain open. Existing evaluations often fall short because they only evaluate on popular subjects, or sample already existing facts from KBs. In this work, we introduce a novel, more challenging benchmark dataset, and a methodology tailored for a realistic assessment of the KBC potential of LMs. For automated assessment, we curate a dataset called WD-KNOWN, which provides an unbiased random sample of Wikidata, containing over 3.9 million facts. In a second step, we perform a human evaluation on predictions that are not yet in the KB, as only this provides real insights into the added value over existing KBs. Our key finding is that biases in dataset conception of previous benchmarks lead to a systematic overestimate of LM performance for KBC. However, our results also reveal strong areas of LMs. We could, for example, perform a significant completion of Wikidata on the relations nativeLanguage, by a factor of ~21 (from 260k to 5.8M) at 82% precision, usedLanguage, by a factor of ~2.1 (from 2.1M to 6.6M) at 82% precision, and citizenOf by a factor of ~0.3 (from 4.2M to 5.3M) at 90% precision. Moreover, we find that LMs possess surprisingly strong generalization capabilities: even on relations where most facts were not directly observed in LM training, prediction quality can be high.

Data-driven algorithms are only as good as the data they work with, while data sets, especially social data, often fail to represent minorities adequately. Representation Bias in data can happen due to various reasons ranging from historical discrimination to selection and sampling biases in the data acquisition and preparation methods. Given that "bias in, bias out", one cannot expect AI-based solutions to have equitable outcomes for societal applications, without addressing issues such as representation bias. While there has been extensive study of fairness in machine learning models, including several review papers, bias in the data has been less studied. This paper reviews the literature on identifying and resolving representation bias as a feature of a data set, independent of how consumed later. The scope of this survey is bounded to structured (tabular) and unstructured (e.g., image, text, graph) data. It presents taxonomies to categorize the studied techniques based on multiple design dimensions and provides a side-by-side comparison of their properties. There is still a long way to fully address representation bias issues in data. The authors hope that this survey motivates researchers to approach these challenges in the future by observing existing work within their respective domains.

With well-selected data, homogeneous diffusion inpainting can reconstruct images from sparse data with high quality. While 4K colour images of size 3840 x 2160 can already be inpainted in real time, optimising the known data for applications like image compression remains challenging: Widely used stochastic strategies can take days for a single 4K image. Recently, a first neural approach for this so-called mask optimisation problem offered high speed and good quality for small images. It trains a mask generation network with the help of a neural inpainting surrogate. However, these mask networks can only output masks for the resolution and mask density they were trained for. We solve these problems and enable mask optimisation for high-resolution images through a neuroexplicit coarse-to-fine strategy. Additionally, we improve the training and interpretability of mask networks by including a numerical inpainting solver directly into the network. This allows to generate masks for 4K images in around 0.6 seconds while exceeding the quality of stochastic methods on practically relevant densities. Compared to popular existing approaches, this is an acceleration of up to four orders of magnitude.

Manipulation is a common concern in many domains, such as social media, advertising, and chatbots. As AI systems mediate more of our interactions with the world, it is important to understand the degree to which AI systems might manipulate humans \textit{without the intent of the system designers}. Our work clarifies challenges in defining and measuring manipulation in the context of AI systems. Firstly, we build upon prior literature on manipulation from other fields and characterize the space of possible notions of manipulation, which we find to depend upon the concepts of incentives, intent, harm, and covertness. We review proposals on how to operationalize each factor. Second, we propose a definition of manipulation based on our characterization: a system is manipulative \textit{if it acts as if it were pursuing an incentive to change a human (or another agent) intentionally and covertly}. Third, we discuss the connections between manipulation and related concepts, such as deception and coercion. Finally, we contextualize our operationalization of manipulation in some applications. Our overall assessment is that while some progress has been made in defining and measuring manipulation from AI systems, many gaps remain. In the absence of a consensus definition and reliable tools for measurement, we cannot rule out the possibility that AI systems learn to manipulate humans without the intent of the system designers. We argue that such manipulation poses a significant threat to human autonomy, suggesting that precautionary actions to mitigate it are warranted.

Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably the revolutionary techniques are in the area of computer vision such as plausible image generation, image to image translation, facial attribute manipulation and similar domains. Despite the significant success achieved in computer vision field, applying GANs over real-world problems still have three main challenges: (1) High quality image generation; (2) Diverse image generation; and (3) Stable training. Considering numerous GAN-related research in the literature, we provide a study on the architecture-variants and loss-variants, which are proposed to handle these three challenges from two perspectives. We propose loss and architecture-variants for classifying most popular GANs, and discuss the potential improvements with focusing on these two aspects. While several reviews for GANs have been presented, there is no work focusing on the review of GAN-variants based on handling challenges mentioned above. In this paper, we review and critically discuss 7 architecture-variant GANs and 9 loss-variant GANs for remedying those three challenges. The objective of this review is to provide an insight on the footprint that current GANs research focuses on the performance improvement. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

北京阿比特科技有限公司