亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Optimal transport and the Wasserstein distance $\mathcal{W}_p$ have recently seen a number of applications in the fields of statistics, machine learning, data science, and the physical sciences. These applications are however severely restricted by the curse of dimensionality, meaning that the number of data points needed to estimate these problems accurately increases exponentially in the dimension. To alleviate this problem, a number of variants of $\mathcal{W}_p$ have been introduced. We focus here on one of these variants, namely the max-sliced Wasserstein metric $\overline{\mathcal{W}}_p$. This metric reduces the high-dimensional minimization problem given by $\mathcal{W}_p$ to a maximum of one-dimensional measurements in an effort to overcome the curse of dimensionality. In this note we derive concentration results and upper bounds on the expectation of $\overline{\mathcal{W}}_p$ between the true and empirical measure on unbounded reproducing kernel Hilbert spaces. We show that, under quite generic assumptions, probability measures concentrate uniformly fast in one-dimensional subspaces, at (nearly) parametric rates. Our results rely on an improvement of currently known bounds for $\overline{\mathcal{W}}_p$ in the finite-dimensional case.

相關內容

Determining the complexity of computing Gr\"{o}bner bases is an important problem both in theory and in practice, and for that the solving degree plays a key role. In this paper, we study the solving degrees of affine semi-regular sequences and their homogenized sequences. Some of our results are considered to give mathematically rigorous proofs of the correctness of methods for computing Gr\"{o}bner bases of the ideal generated by an affine semi-regular sequence. This paper is a sequel of the authors' previous work and gives additional results on the solving degrees and important behaviors of Gr\"obner basis computation. We also define the generalized degree of regularity for a sequence of homogeneous polynomials. For the homogenization of an affine semi-regular sequence, we relate its generalized degree of regularity with its maximal Gr\"{o}bner basis degree (i.e., the solving degree of the homogenized sequence). The definition of a generalized (cryptographic) semi-regular sequence is also given, and it derives a new cryptographic assumption to estimate the security of cryptosystems and signature schemes. From our experimental observation, we raise a conjecture and some questions related to this generalized semi-regularity. These new definitions and our results provide a theoretical formulation of (somehow heuristic) discussions done so far in the cryptographic community.

The use of operator-splitting methods to solve differential equations is widespread, but the methods are generally only defined for a given number of operators, most commonly two. Most operator-splitting methods are not generalizable to problems with $N$ operators for arbitrary $N$. In fact, there are only two known methods that can be applied to general $N$-split problems: the first-order Lie--Trotter (or Godunov) method and the second-order Strang (or Strang--Marchuk) method. In this paper, we derive two second-order operator-splitting methods that also generalize to $N$-split problems. These methods are complex valued but have positive real parts, giving them favorable stability properties, and require few sub-integrations per stage, making them computationally inexpensive. They can also be used as base methods from which to construct higher-order $N$-split operator-splitting methods with positive real parts. We verify the orders of accuracy of these new $N$-split methods and demonstrate their favorable efficiency properties against well-known real-valued operator-splitting methods on both real-valued and complex-valued differential equations.

We obtain the smallest unsatisfiable formulas in subclasses of $k$-CNF (exactly $k$ distinct literals per clause) with bounded variable or literal occurrences. Smaller unsatisfiable formulas of this type translate into stronger inapproximability results for MaxSAT in the considered formula class. Our results cover subclasses of 3-CNF and 4-CNF; in all subclasses of 3-CNF we considered we were able to determine the smallest size of an unsatisfiable formula; in the case of 4-CNF with at most 5 occurrences per variable we decreased the size of the smallest known unsatisfiable formula. Our methods combine theoretical arguments and symmetry-breaking exhaustive search based on SAT Modulo Symmetries (SMS), a recent framework for isomorph-free SAT-based graph generation. To this end, and as a standalone result of independent interest, we show how to encode formulas as graphs efficiently for SMS.

We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.

We prove that the Weihrauch degree of the problem of finding a bad sequence in a non-well quasi order ($\mathsf{BS}$) is strictly above that of finding a descending sequence in an ill-founded linear order ($\mathsf{DS}$). This corrects our mistaken claim in arXiv:2010.03840, which stated that they are Weihrauch equivalent. We prove that K\"onig's lemma $\mathsf{KL}$ and the problem $\mathsf{wList}_{2^{\mathbb{N}},\leq\omega}$ of enumerating a given non-empty countable closed subset of $2^\mathbb{N}$ are not Weihrauch reducible to $\mathsf{DS}$ either, resolving two main open questions raised in arXiv:2010.03840.

Tools from optimal transport (OT) theory have recently been used to define a notion of quantile function for directional data. In practice, regularization is mandatory for applications that require out-of-sample estimates. To this end, we introduce a regularized estimator built from entropic optimal transport, by extending the definition of the entropic map to the spherical setting. We propose a stochastic algorithm to directly solve a continuous OT problem between the uniform distribution and a target distribution, by expanding Kantorovich potentials in the basis of spherical harmonics. In addition, we define the directional Monge-Kantorovich depth, a companion concept for OT-based quantiles. We show that it benefits from desirable properties related to Liu-Zuo-Serfling axioms for the statistical analysis of directional data. Building on our regularized estimators, we illustrate the benefits of our methodology for data analysis.

Emulating the mapping between quantities of interest and their control parameters using surrogate models finds widespread application in engineering design, including in numerical optimization and uncertainty quantification. Gaussian process models can serve as a probabilistic surrogate model of unknown functions, thereby making them highly suitable for engineering design and decision-making in the presence of uncertainty. In this work, we are interested in emulating quantities of interest observed from models of a system at multiple fidelities, which trade accuracy for computational efficiency. Using multifidelity Gaussian process models, to efficiently fuse models at multiple fidelities, we propose a novel method to actively learn the surrogate model via leave-one-out cross-validation (LOO-CV). Our proposed multifidelity cross-validation (\texttt{MFCV}) approach develops an adaptive approach to reduce the LOO-CV error at the target (highest) fidelity, by learning the correlations between the LOO-CV at all fidelities. \texttt{MFCV} develops a two-step lookahead policy to select optimal input-fidelity pairs, both in sequence and in batches, both for continuous and discrete fidelity spaces. We demonstrate the utility of our method on several synthetic test problems as well as on the thermal stress analysis of a gas turbine blade.

The Landau--Lifshitz--Baryakhtar (LLBar) and the Landau--Lifshitz--Bloch (LLBloch) equations are nonlinear vector-valued PDEs which arise in the theory of micromagnetics to describe the dynamics of magnetic spin field in a ferromagnet at elevated temperatures. We consider the LLBar and the regularised LLBloch equations in a unified manner, thus allowing us to treat the numerical approximations for both problems at once. In this paper, we propose a semi-discrete mixed finite element scheme and two fully discrete mixed finite element schemes based on a semi-implicit Euler method and a semi-implicit Crank--Nicolson method to solve the problems. These numerical schemes provide accurate approximations to both the magnetisation vector and the effective magnetic field. Moreover, they are proven to be unconditionally energy-stable and preserve energy dissipativity of the system at the discrete level. Error analysis is performed which shows optimal rates of convergence in $\mathbb{L}^2$, $\mathbb{L}^\infty$, and $\mathbb{H}^1$ norms. These theoretical results are further corroborated by several numerical experiments.

We investigate the statistical and computational limits of latent \textbf{Di}ffusion \textbf{T}ransformers (\textbf{DiT}s) under the low-dimensional linear latent space assumption. Statistically, we study the universal approximation and sample complexity of the DiTs score function, as well as the distribution recovery property of the initial data. Specifically, under mild data assumptions, we derive an approximation error bound for the score network of latent DiTs, which is sub-linear in the latent space dimension. Additionally, we derive the corresponding sample complexity bound and show that the data distribution generated from the estimated score function converges toward a proximate area of the original one. Computationally, we characterize the hardness of both forward inference and backward computation of latent DiTs, assuming the Strong Exponential Time Hypothesis (SETH). For forward inference, we identify efficient criteria for all possible latent DiTs inference algorithms and showcase our theory by pushing the efficiency toward almost-linear time inference. For backward computation, we leverage the low-rank structure within the gradient computation of DiTs training for possible algorithmic speedup. Specifically, we show that such speedup achieves almost-linear time latent DiTs training by casting the DiTs gradient as a series of chained low-rank approximations with bounded error. Under the low-dimensional assumption, we show that the convergence rate and the computational efficiency are both dominated by the dimension of the subspace, suggesting that latent DiTs have the potential to bypass the challenges associated with the high dimensionality of initial data.

We consider the problem of enumerating all minimal transversals (also called minimal hitting sets) of a hypergraph $\mathcal{H}$. An equivalent formulation of this problem known as the \emph{transversal hypergraph} problem (or \emph{hypergraph dualization} problem) is to decide, given two hypergraphs, whether one corresponds to the set of minimal transversals of the other. The existence of a polynomial time algorithm to solve this problem is a long standing open question. In \cite{fredman_complexity_1996}, the authors present the first sub-exponential algorithm to solve the transversal hypergraph problem which runs in quasi-polynomial time, making it unlikely that the problem is (co)NP-complete. In this paper, we show that when one of the two hypergraphs is of bounded VC-dimension, the transversal hypergraph problem can be solved in polynomial time, or equivalently that if $\mathcal{H}$ is a hypergraph of bounded VC-dimension, then there exists an incremental polynomial time algorithm to enumerate its minimal transversals. This result generalizes most of the previously known polynomial cases in the literature since they almost all consider classes of hypergraphs of bouded VC-dimension. As a consequence, the hypergraph transversal problem is solvable in polynomial time for any class of hypergraphs closed under partial subhypergraphs. We also show that the proposed algorithm runs in quasi-polynomial time in general hypergraphs and runs in polynomial time if the conformality of the hypergraph is bounded, which is one of the few known polynomial cases where the VC-dimension is unbounded.

北京阿比特科技有限公司