This paper synthesizes recent advances in the econometrics of difference-in-differences (DiD) and provides concrete recommendations for practitioners. We begin by articulating a simple set of "canonical" assumptions under which the econometrics of DiD are well-understood. We then argue that recent advances in DiD methods can be broadly classified as relaxing some components of the canonical DiD setup, with a focus on $(i)$ multiple periods and variation in treatment timing, $(ii)$ potential violations of parallel trends, or $(iii)$ alternative frameworks for inference. Our discussion highlights the different ways that the DiD literature has advanced beyond the canonical model, and helps to clarify when each of the papers will be relevant for empirical work. We conclude by discussing some promising areas for future research.
Given its status as a classic problem and its importance to both theoreticians and practitioners, edit distance provides an excellent lens through which to understand how the theoretical analysis of algorithms impacts practical implementations. From an applied perspective, the goals of theoretical analysis are to predict the empirical performance of an algorithm and to serve as a yardstick to design novel algorithms that perform well in practice. In this paper, we systematically survey the types of theoretical analysis techniques that have been applied to edit distance and evaluate the extent to which each one has achieved these two goals. These techniques include traditional worst-case analysis, worst-case analysis parametrized by edit distance or entropy or compressibility, average-case analysis, semi-random models, and advice-based models. We find that the track record is mixed. On one hand, two algorithms widely used in practice have been born out of theoretical analysis and their empirical performance is captured well by theoretical predictions. On the other hand, all the algorithms developed using theoretical analysis as a yardstick since then have not had any practical relevance. We conclude by discussing the remaining open problems and how they can be tackled.
Atmospheric turbulence deteriorates the quality of images captured by long-range imaging systems by introducing blur and geometric distortions to the captured scene. This leads to a drastic drop in performance when computer vision algorithms like object/face recognition and detection are performed on these images. In recent years, various deep learning-based atmospheric turbulence mitigation methods have been proposed in the literature. These methods are often trained using synthetically generated images and tested on real-world images. Hence, the performance of these restoration methods depends on the type of simulation used for training the network. In this paper, we systematically evaluate the effectiveness of various turbulence simulation methods on image restoration. In particular, we evaluate the performance of two state-or-the-art restoration networks using six simulations method on a real-world LRFID dataset consisting of face images degraded by turbulence. This paper will provide guidance to the researchers and practitioners working in this field to choose the suitable data generation models for training deep models for turbulence mitigation. The implementation codes for the simulation methods, source codes for the networks, and the pre-trained models will be publicly made available.
Although text style transfer has witnessed rapid development in recent years, there is as yet no established standard for evaluation, which is performed using several automatic metrics, lacking the possibility of always resorting to human judgement. We focus on the task of formality transfer, and on the three aspects that are usually evaluated: style strength, content preservation, and fluency. To cast light on how such aspects are assessed by common and new metrics, we run a human-based evaluation and perform a rich correlation analysis. We are then able to offer some recommendations on the use of such metrics in formality transfer, also with an eye to their generalisability (or not) to related tasks.
In recent years, large pre-trained transformers have led to substantial gains in performance over traditional retrieval models and feedback approaches. However, these results are primarily based on the MS Marco/TREC Deep Learning Track setup, with its very particular setup, and our understanding of why and how these models work better is fragmented at best. We analyze effective BERT-based cross-encoders versus traditional BM25 ranking for the passage retrieval task where the largest gains have been observed, and investigate two main questions. On the one hand, what is similar? To what extent does the neural ranker already encompass the capacity of traditional rankers? Is the gain in performance due to a better ranking of the same documents (prioritizing precision)? On the other hand, what is different? Can it retrieve effectively documents missed by traditional systems (prioritizing recall)? We discover substantial differences in the notion of relevance identifying strengths and weaknesses of BERT that may inspire research for future improvement. Our results contribute to our understanding of (black-box) neural rankers relative to (well-understood) traditional rankers, help understand the particular experimental setting of MS-Marco-based test collections.
The purpose of this systematic review is to identify and describe the state of development literature published in Latin America, in Spanish and English, since 2010. For this, we carried out a topographic review of 44 articles available in the most important bibliographic indexes of Latin America, published in journals of diverse disciplines. Our analysis focused on analyzing the nature and composition of literature, finding a large proportion of articles coming from Mexico and Colombia, as well as specialized in the economic discipline. The most relevant articles reviewed show methodological and thematic diversity, with special attention to the problem of growth in Latin American development. An important limitation of this review is the exclusion of articles published in Portuguese, as well as non-indexed literature (such as theses and dissertations). This leads to various recommendations for future reviews of the development literature produced in Latin America.
Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.
Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.