亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) are now being used in a wide variety of contexts, including as creativity support tools (CSTs) intended to help their users come up with new ideas. But do LLMs actually support user creativity? We hypothesized that the use of an LLM as a CST might make the LLM's users feel more creative, and even broaden the range of ideas suggested by each individual user, but also homogenize the ideas suggested by different users. We conducted a 36-participant comparative user study and found, in accordance with the homogenization hypothesis, that different users tended to produce less semantically distinct ideas with ChatGPT than with an alternative CST. Additionally, ChatGPT users generated a greater number of more detailed ideas, but felt less responsible for the ideas they generated. We discuss potential implications of these findings for users, designers, and developers of LLM-based CSTs.

相關內容

Large language models (LLMs) are susceptible to a type of attack known as jailbreaking, which misleads LLMs to output harmful contents. Although there are diverse jailbreak attack strategies, there is no unified understanding on why some methods succeed and others fail. This paper explores the behavior of harmful and harmless prompts in the LLM's representation space to investigate the intrinsic properties of successful jailbreak attacks. We hypothesize that successful attacks share some similar properties: They are effective in moving the representation of the harmful prompt towards the direction to the harmless prompts. We leverage hidden representations into the objective of existing jailbreak attacks to move the attacks along the acceptance direction, and conduct experiments to validate the above hypothesis using the proposed objective. We hope this study provides new insights into understanding how LLMs understand harmfulness information.

Recent advancements in long-context large language models have attracted significant attention, yet their practical applications often suffer from suboptimal context utilization. This study investigates structuring training data to enhance semantic interdependence, demonstrating that this approach effectively improves context utilization. To this end, we introduce the Structured Packing for Long Context (SPLiCe) method, which utilizes retrieval to collate mutually relevant documents into long and coherent training examples. We validate SPLiCe empirically across models of varying sizes -- 3B, 7B, and 13B -- achieving improved performance in long-context tasks, such as Qasper and HotpotQA. Remarkably, even brief fine-tuning with SPLiCe is sufficient to realize these benefits. Additionally, SPLiCe effectively mitigates the lost-in-middle phenomenon often observed in large models. Our comprehensive analysis of SPLiCe explores its design choices and reveals intriguing transfer effects; for instance, training on programming code enhances performance on natural language tasks.

Although language models (LMs) demonstrate exceptional capabilities on various tasks, they are potentially vulnerable to extraction attacks, which represent a significant privacy risk. To mitigate the privacy concerns of LMs, machine unlearning has emerged as an important research area, which is utilized to induce the LM to selectively forget about some of its training data. While completely retraining the model will guarantee successful unlearning and privacy assurance, it is impractical for LMs, as it would be time-consuming and resource-intensive. Prior works efficiently unlearn the target token sequences, but upon subsequent iterations, the LM displays significant degradation in performance. In this work, we propose Privacy Protection via Optimal Parameters (POP), a novel unlearning method that effectively forgets the target token sequences from the pretrained LM by applying optimal gradient updates to the parameters. Inspired by the gradient derivation of complete retraining, we approximate the optimal training objective that successfully unlearns the target sequence while retaining the knowledge from the rest of the training data. Experimental results demonstrate that POP exhibits remarkable retention performance post-unlearning across 9 classification and 4 dialogue benchmarks, outperforming the state-of-the-art by a large margin. Furthermore, we introduce Remnant Memorization Accuracy that quantifies privacy risks based on token likelihood and validate its effectiveness through both qualitative and quantitative analyses.

Gender bias in text corpora used in various natural language processing (NLP) contexts, such as for training large language models (LLMs), can lead to the perpetuation and amplification of societal inequalities. This is particularly pronounced in gendered languages like Spanish or French, where grammatical structures inherently encode gender, making the bias analysis more challenging. Existing methods designed for English are inadequate for this task due to the intrinsic linguistic differences between English and gendered languages. This paper introduces a novel methodology that leverages the contextual understanding capabilities of LLMs to quantitatively analyze gender representation in Spanish corpora. By utilizing LLMs to identify and classify gendered nouns and pronouns in relation to their reference to human entities, our approach provides a nuanced analysis of gender biases. We empirically validate our method on four widely-used benchmark datasets, uncovering significant gender disparities with a male-to-female ratio ranging from 4:1 to 6:1. These findings demonstrate the value of our methodology for bias quantification in gendered languages and suggest its application in NLP, contributing to the development of more equitable language technologies.

Vision-language models (VLMs) seamlessly integrate visual and textual data to perform tasks such as image classification, caption generation, and visual question answering. However, adversarial images often struggle to deceive all prompts effectively in the context of cross-prompt migration attacks, as the probability distribution of the tokens in these images tends to favor the semantics of the original image rather than the target tokens. To address this challenge, we propose a Contextual-Injection Attack (CIA) that employs gradient-based perturbation to inject target tokens into both visual and textual contexts, thereby improving the probability distribution of the target tokens. By shifting the contextual semantics towards the target tokens instead of the original image semantics, CIA enhances the cross-prompt transferability of adversarial images.Extensive experiments on the BLIP2, InstructBLIP, and LLaVA models show that CIA outperforms existing methods in cross-prompt transferability, demonstrating its potential for more effective adversarial strategies in VLMs.

The recent successes and spread of large neural language models (LMs) call for a thorough understanding of their computational ability. Describing their computational abilities through LMs' \emph{representational capacity} is a lively area of research. However, investigation into the representational capacity of neural LMs has predominantly focused on their ability to \emph{recognize} formal languages. For example, recurrent neural networks (RNNs) with Heaviside activations are tightly linked to regular languages, i.e., languages defined by finite-state automata (FSAs). Such results, however, fall short of describing the capabilities of RNN \emph{language models} (LMs), which are definitionally \emph{distributions} over strings. We take a fresh look at the representational capacity of RNN LMs by connecting them to \emph{probabilistic} FSAs and demonstrate that RNN LMs with linearly bounded precision can express arbitrary regular LMs.

Large language models (LLMs) are powerful models that can learn concepts at the inference stage via in-context learning (ICL). While theoretical studies, e.g., \cite{zhang2023trained}, attempt to explain the mechanism of ICL, they assume the input $x_i$ and the output $y_i$ of each demonstration example are in the same token (i.e., structured data). However, in real practice, the examples are usually text input, and all words, regardless of their logic relationship, are stored in different tokens (i.e., unstructured data \cite{wibisono2023role}). To understand how LLMs learn from the unstructured data in ICL, this paper studies the role of each component in the transformer architecture and provides a theoretical understanding to explain the success of the architecture. In particular, we consider a simple transformer with one/two attention layers and linear regression tasks for the ICL prediction. We observe that (1) a transformer with two layers of (self-)attentions with a look-ahead attention mask can learn from the prompt in the unstructured data, and (2) positional encoding can match the $x_i$ and $y_i$ tokens to achieve a better ICL performance.

To generate coherent responses, language models infer unobserved meaning from their input text sequence. One potential explanation for this capability arises from theories of delay embeddings in dynamical systems, which prove that unobserved variables can be recovered from the history of only a handful of observed variables. To test whether language models are effectively constructing delay embeddings, we measure the capacities of sequence models to reconstruct unobserved dynamics. We trained 1-layer transformer decoders and state-space sequence models on next-step prediction from noisy, partially-observed time series data. We found that each sequence layer can learn a viable embedding of the underlying system. However, state-space models have a stronger inductive bias than transformers-in particular, they more effectively reconstruct unobserved information at initialization, leading to more parameter-efficient models and lower error on dynamics tasks. Our work thus forges a novel connection between dynamical systems and deep learning sequence models via delay embedding theory.

Large language models (LLMs) based on decoder-only transformers have demonstrated superior text understanding capabilities compared to CLIP and T5-series models. However, the paradigm for utilizing current advanced LLMs in text-to-image diffusion models remains to be explored. We observed an unusual phenomenon: directly using a large language model as the prompt encoder significantly degrades the prompt-following ability in image generation. We identified two main obstacles behind this issue. One is the misalignment between the next token prediction training in LLM and the requirement for discriminative prompt features in diffusion models. The other is the intrinsic positional bias introduced by the decoder-only architecture. To deal with this issue, we propose a novel framework to fully harness the capabilities of LLMs. Through the carefully designed usage guidance, we effectively enhance the text representation capability for prompt encoding and eliminate its inherent positional bias. This allows us to integrate state-of-the-art LLMs into the text-to-image generation model flexibly. Furthermore, we also provide an effective manner to fuse multiple LLMs into our framework. Considering the excellent performance and scaling capabilities demonstrated by the transformer architecture, we further design an LLM-Infused Diffusion Transformer (LI-DiT) based on the framework. We conduct extensive experiments to validate LI-DiT across model size and data size. Benefiting from the inherent ability of the LLMs and our innovative designs, the prompt understanding performance of LI-DiT easily surpasses state-of-the-art open-source models as well as mainstream closed-source commercial models including Stable Diffusion 3, DALL-E 3, and Midjourney V6. The powerful LI-DiT-10B will be available after further optimization and security checks.

The task of "unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently, due to its importance for mitigating undesirable model behaviours, such as the generation of harmful, private, or incorrect information. Current protocols to evaluate unlearning methods largely rely on behavioral tests, without monitoring the presence of unlearned knowledge within the model's parameters. This residual knowledge can be adversarially exploited to recover the erased information post-unlearning. We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts. To this end, we propose a general methodology for eliciting directions in the parameter space (termed "concept vectors") that encode concrete concepts, and construct ConceptVectors, a benchmark dataset containing hundreds of common concepts and their parametric knowledge traces within two open-source LLMs. Evaluation on ConceptVectors shows that existing unlearning methods minimally impact concept vectors, while directly ablating these vectors demonstrably removes the associated knowledge from the LLMs and significantly reduces their susceptibility to adversarial manipulation. Our results highlight limitations in behavioral-based unlearning evaluations and call for future work to include parametric-based evaluations. To support this, we release our code and benchmark at //github.com/yihuaihong/ConceptVectors.

北京阿比特科技有限公司