亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the advent of advanced multi-sensor fusion models, there has been a notable enhancement in the performance of perception tasks within in terms of autonomous driving. Despite these advancements, the challenges persist, particularly in the fusion of data from cameras and LiDAR sensors. A critial concern is the accurate alignment of data from these disparate sensors. Our observations indicate that the projected positions of LiDAR points often misalign on the corresponding image. Furthermore, fusion models appear to struggle in accurately segmenting these misaligned points. In this paper, we would like to address this problem carefully, with a specific focus on the nuScenes dataset and the SOTA of fusion models 2DPASS, and providing the possible solutions or potential improvements.

相關內容

Given the complex geometry of white matter streamlines, Autoencoders have been proposed as a dimension-reduction tool to simplify the analysis streamlines in a low-dimensional latent spaces. However, despite these recent successes, the majority of encoder architectures only perform dimension reduction on single streamlines as opposed to a full bundle of streamlines. This is a severe limitation of the encoder architecture that completely disregards the global geometric structure of streamlines at the expense of individual fibers. Moreover, the latent space may not be well structured which leads to doubt into their interpretability. In this paper we propose a novel Differentiable Vector Quantized Variational Autoencoder, which are engineered to ingest entire bundles of streamlines as single data-point and provides reliable trustworthy encodings that can then be later used to analyze streamlines in the latent space. Comparisons with several state of the art Autoencoders demonstrate superior performance in both encoding and synthesis.

Large pre-trained sequence models, such as transformer-based architectures, have been recently shown to have the capacity to carry out in-context learning (ICL). In ICL, a decision on a new input is made via a direct mapping of the input and of a few examples from the given task, serving as the task's context, to the output variable. No explicit updates of model parameters are needed to tailor the decision to a new task. Pre-training, which amounts to a form of meta-learning, is based on the observation of examples from several related tasks. Prior work has shown ICL capabilities for linear regression. In this study, we leverage ICL to address the inverse problem of multiple-input and multiple-output (MIMO) equalization based on a context given by pilot symbols. A task is defined by the unknown fading channel and by the signal-to-noise ratio (SNR) level, which may be known. To highlight the practical potential of the approach, we allow for the presence of quantization of the received signals. We demonstrate via numerical results that transformer-based ICL has a threshold behavior, whereby, as the number of pre-training tasks grows, the performance switches from that of a minimum mean squared error (MMSE) equalizer with a prior determined by the pre-trained tasks to that of an MMSE equalizer with the true data-generating prior.

As a driving force in the advancement of intelligent in-orbit applications, DNN models have been gradually integrated into satellites, producing daily latency-constraint and computation-intensive tasks. However, the substantial computation capability of DNN models, coupled with the instability of the satellite-ground link, pose significant challenges, hindering timely completion of tasks. It becomes necessary to adapt to task stream changes when dealing with tasks requiring latency guarantees, such as dynamic observation tasks on the satellites. To this end, we consider a system model for a collaborative inference system with latency constraints, leveraging the multi-exit and model partition technology. To address this, we propose an algorithm, which is tailored to effectively address the trade-off between task completion and maintaining satisfactory task accuracy by dynamically choosing early-exit and partition points. Simulation evaluations show that our proposed algorithm significantly outperforms baseline algorithms across the task stream with strict latency constraints.

The car-following (CF) model is the core component for traffic simulations and has been built-in in many production vehicles with Advanced Driving Assistance Systems (ADAS). Research of CF behavior allows us to identify the sources of different macro phenomena induced by the basic process of pairwise vehicle interaction. The CF behavior and control model encompasses various fields, such as traffic engineering, physics, cognitive science, machine learning, and reinforcement learning. This paper provides a comprehensive survey highlighting differences, complementarities, and overlaps among various CF models according to their underlying logic and principles. We reviewed representative algorithms, ranging from the theory-based kinematic models, stimulus-response models, and cruise control models to data-driven Behavior Cloning (BC) and Imitation Learning (IL) and outlined their strengths and limitations. This review categorizes CF models that are conceptualized in varying principles and summarize the vast literature with a holistic framework.

As a classical generative modeling approach, energy-based models have the natural advantage of flexibility in the form of the energy function. Recently, energy-based models have achieved great success in modeling high-dimensional data in computer vision and natural language processing. In line with these advancements, we build a multi-purpose energy-based probabilistic model for High Energy Physics events at the Large Hadron Collider. This framework builds on a powerful generative model and describes higher-order inter-particle interactions. It suits different encoding architectures and builds on implicit generation. As for applicational aspects, it can serve as a powerful parameterized event generator for physics simulation, a generic anomalous signal detector free from spurious correlations, and an augmented event classifier for particle identification.

The densest subgraph problem has received significant attention, both in theory and in practice, due to its applications in problems such as community detection, social network analysis, and spam detection. Due to the high cost of obtaining exact solutions, much attention has focused on designing approximate densest subgraph algorithms. However, existing approaches are not able to scale to massive graphs with billions of edges. In this paper, we introduce a new framework that combines approximate densest subgraph algorithms with a pruning optimization. We design new parallel variants of the state-of-the-art sequential Greedy++ algorithm, and plug it into our framework in conjunction with a parallel pruning technique based on $k$-core decomposition to obtain parallel $(1+\varepsilon)$-approximate densest subgraph algorithms. On a single thread, our algorithms achieve $2.6$--$34\times$ speedup over Greedy++, and obtain up to $22.37\times$ self relative parallel speedup on a 30-core machine with two-way hyper-threading. Compared with the state-of-the-art parallel algorithm by Harb et al. [NeurIPS'22], we achieve up to a $114\times$ speedup on the same machine. Finally, against the recent sequential algorithm of Xu et al. [PACMMOD'23], we achieve up to a $25.9\times$ speedup. The scalability of our algorithms enables us to obtain near-optimal density statistics on the hyperlink2012 (with roughly 113 billion edges) and clueweb (with roughly 37 billion edges) graphs for the first time in the literature.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司