亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The quantum communication cost of computing a classical sum of distributed sources is studied over a quantum erasure multiple access channel (QEMAC). $K$ messages are distributed across $S$ servers so that each server knows a subset of the messages. Each server $s\in[S]$ sends a quantum subsystem $\mathcal{Q}_s$ to the receiver who computes the sum of the messages. The download cost from Server $s\in [S]$ is the logarithm of the dimension of $\mathcal{Q}_s$. The rate $R$ is defined as the number of instances of the sum computed at the receiver, divided by the total download cost from all the servers. In the symmetric setting with $K= {S \choose \alpha} $ messages where each message is replicated among a unique subset of $\alpha$ servers, and the answers from any $\beta$ servers may be erased, the rate achieved is $R= \max\left\{ \min \left\{ \frac{2(\alpha-\beta)}{S}, 1-\frac{2\beta}{S} \right\}, \frac{\alpha-\beta}{S} \right\}$, which is shown to be optimal when $S\geq 2\alpha$.

相關內容

服務器,也稱伺服器,是提供計算服務的設備。由于服務器需要響應服務請求,并進行處理,因此一般來說服務器應具備承擔服務并且保障服務的能力。
 服務器的構成包括處理器、硬盤、內存、系統總線等,和通用的計算機架構類似,但是由于需要提供高可靠的服務,因此在處理能力、穩定性、可靠性、安全性、可擴展性、可管理性等方面要求較高。

The Kaczmarz algorithm is an iterative method that solves linear systems of equations. It stands out among iterative algorithms when dealing with large systems for two reasons. First, at each iteration, the Kaczmarz algorithm uses a single equation, resulting in minimal computational work per iteration. Second, solving the entire system may only require the use of a small subset of the equations. These characteristics have attracted significant attention to the Kaczmarz algorithm. Researchers have observed that randomly choosing equations can improve the convergence rate of the algorithm. This insight led to the development of the Randomized Kaczmarz algorithm and, subsequently, several other variations emerged. In this paper, we extensively analyze the native Kaczmarz algorithm and many of its variations using large-scale dense random systems as benchmarks. Through our investigation, we have verified that, for consistent systems, various row sampling schemes can outperform both the original and Randomized Kaczmarz method. Specifically, sampling without replacement and using quasirandom numbers are the fastest techniques. However, for inconsistent systems, the Conjugate Gradient method for Least-Squares problems overcomes all variations of the Kaczmarz method for these types of systems.

Transformer is an emerging neural network model with attention mechanism. It has been adopted to various tasks and achieved a favorable accuracy compared to CNNs and RNNs. While the attention mechanism is recognized as a general-purpose component, many of the Transformer models require a significant number of parameters compared to the CNN-based ones. To mitigate the computational complexity, recently, a hybrid approach has been proposed, which uses ResNet as a backbone architecture and replaces a part of its convolution layers with an MHSA (Multi-Head Self-Attention) mechanism. In this paper, we significantly reduce the parameter size of such models by using Neural ODE (Ordinary Differential Equation) as a backbone architecture instead of ResNet. The proposed hybrid model reduces the parameter size by 94.6% compared to the CNN-based ones without degrading the accuracy. We then deploy the proposed model on a modest-sized FPGA device for edge computing. To further reduce FPGA resource utilization, we quantize the model following QAT (Quantization Aware Training) scheme instead of PTQ (Post Training Quantization) to suppress the accuracy loss. As a result, an extremely lightweight Transformer-based model can be implemented on resource-limited FPGAs. The weights of the feature extraction network are stored on-chip to minimize the memory transfer overhead, allowing faster inference. By eliminating the overhead of memory transfers, inference can be executed seamlessly, leading to accelerated inference. The proposed FPGA implementation achieves 12.8x speedup and 9.21x energy efficiency compared to ARM Cortex-A53 CPU.

Neural marked temporal point processes have been a valuable addition to the existing toolbox of statistical parametric models for continuous-time event data. These models are useful for sequences where each event is associated with a single item (a single type of event or a "mark") -- but such models are not suited for the practical situation where each event is associated with a set of items. In this work, we develop a general framework for modeling set-valued data in continuous-time, compatible with any intensity-based recurrent neural point process model. In addition, we develop inference methods that can use such models to answer probabilistic queries such as "the probability of item $A$ being observed before item $B$," conditioned on sequence history. Computing exact answers for such queries is generally intractable for neural models due to both the continuous-time nature of the problem setting and the combinatorially-large space of potential outcomes for each event. To address this, we develop a class of importance sampling methods for querying with set-based sequences and demonstrate orders-of-magnitude improvements in efficiency over direct sampling via systematic experiments with four real-world datasets. We also illustrate how to use this framework to perform model selection using likelihoods that do not involve one-step-ahead prediction.

Mobile edge computing (MEC) is powerful to alleviate the heavy computing tasks in integrated sensing and communication (ISAC) systems. In this paper, we investigate joint beamforming and offloading design in a three-tier integrated sensing, communication and computation (ISCC) framework comprising one cloud server, multiple mobile edge servers, and multiple terminals. While executing sensing tasks, the user terminals can optionally offload sensing data to either MEC server or cloud servers. To minimize the execution latency, we jointly optimize the transmit beamforming matrices and offloading decision variables under the constraint of sensing performance. An alternating optimization algorithm based on multidimensional fractional programming is proposed to tackle the non-convex problem. Simulation results demonstrates the superiority of the proposed mechanism in terms of convergence and task execution latency reduction, compared with the state-of-the-art two-tier ISCC framework.

We present a new method that includes three key components of distributed optimization and federated learning: variance reduction of stochastic gradients, partial participation, and compressed communication. We prove that the new method has optimal oracle complexity and state-of-the-art communication complexity in the partial participation setting. Regardless of the communication compression feature, our method successfully combines variance reduction and partial participation: we get the optimal oracle complexity, never need the participation of all nodes, and do not require the bounded gradients (dissimilarity) assumption.

We address the choice of penalty parameter in the Smoothness-Penalized Deconvolution (SPeD) method of estimating a probability density under additive measurement error. Cross-validation gives an unbiased estimate of the risk (for the present sample size n) with a given penalty parameter, and this function can be minimized as a function of the penalty parameter. Least-squares cross-validation, which has been proposed for the similar Deconvoluting Kernel Density Estimator (DKDE), performs quite poorly for SPeD. We instead estimate the risk function for a smaller sample size n_1 < n with a given penalty parameter, using this to choose the penalty parameter for sample size n_1, and then use the asymptotics of the optimal penalty parameter to choose for sample size n. In a simulation study, we find that this has dramatically better performance than cross-validation, is an improvement over a SURE-type method previously proposed for this estimator, and compares favorably to the classic DKDE with its recommended plug-in method. We prove that the maximum error in estimating the risk function is of smaller order than its optimal rate of convergence.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司