In this paper we show that using implicative algebras one can produce models of set theory generalizing Heyting/Boolean-valued models and realizability models of (I)ZF, both in intuitionistic and classical logic. This has as consequence that any topos which is obtained from a Set-based tripos as the result of the tripos-to-topos construction hosts a model of intuitionistic or classical set theory, provided a large enough strongly inaccessible cardinal exists.
By using the stochastic particle method, the truncated Euler-Maruyama (TEM) method is proposed for numerically solving McKean-Vlasov stochastic differential equations (MV-SDEs), possibly with both drift and diffusion coefficients having super-linear growth in the state variable. Firstly, the result of the propagation of chaos in the L^q (q\geq 2) sense is obtained under general assumptions. Then, the standard 1/2-order strong convergence rate in the L^q sense of the proposed method corresponding to the particle system is derived by utilizing the stopping time analysis technique. Furthermore, long-time dynamical properties of MV-SDEs, including the moment boundedness, stability, and the existence and uniqueness of the invariant probability measure, can be numerically realized by the TEM method. Additionally, it is proven that the numerical invariant measure converges to the underlying one of MV-SDEs in the L^2-Wasserstein metric. Finally, the conclusions obtained in this paper are verified through examples and numerical simulations.
Understanding fluid movement in multi-pored materials is vital for energy security and physiology. For instance, shale (a geological material) and bone (a biological material) exhibit multiple pore networks. Double porosity/permeability models provide a mechanics-based approach to describe hydrodynamics in aforesaid porous materials. However, current theoretical results primarily address state-state response, and their counterparts in the transient regime are still wanting. The primary aim of this paper is to fill this knowledge gap. We present three principal properties -- with rigorous mathematical arguments -- that the solutions under the double porosity/permeability model satisfy in the transient regime: backward-in-time uniqueness, reciprocity, and a variational principle. We employ the ``energy method'' -- by exploiting the physical total kinetic energy of the flowing fluid -- to establish the first property and Cauchy-Riemann convolutions to prove the next two. The results reported in this paper -- that qualitatively describe the dynamics of fluid flow in double-pored media -- have (a) theoretical significance, (b) practical applications, and (c) considerable pedagogical value. In particular, these results will benefit practitioners and computational scientists in checking the accuracy of numerical simulators. The backward-in-time uniqueness lays a firm theoretical foundation for pursuing inverse problems in which one predicts the prescribed initial conditions based on data available about the solution at a later instance.
The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices $A_n$ arising from numerical discretizations of differential equations. Indeed, when the mesh fineness parameter $n$ tends to infinity, these matrices $A_n$ give rise to a sequence $\{A_n\}_n$, which often turns out to be a GLT sequence. In this paper, we extend the theory of GLT sequences in several directions: we show that every GLT sequence enjoys a normal form, we identify the spectral symbol of every GLT sequence formed by normal matrices, and we prove that, for every GLT sequence $\{A_n\}_n$ formed by normal matrices and every continuous function $f:\mathbb C\to\mathbb C$, the sequence $\{f(A_n)\}_n$ is again a GLT sequence whose spectral symbol is $f(\kappa)$, where $\kappa$ is the spectral symbol of $\{A_n\}_n$. In addition, using the theory of GLT sequences, we prove a spectral distribution result for perturbed normal matrices.
One tuple of probability vectors is more informative than another tuple when there exists a single stochastic matrix transforming the probability vectors of the first tuple into the probability vectors of the other. This is called matrix majorization. Solving an open problem raised by Mu et al, we show that if certain monotones - namely multivariate extensions of R\'{e}nyi divergences - are strictly ordered between the two tuples, then for sufficiently large $n$, there exists a stochastic matrix taking the $n$-fold Kronecker power of each input distribution to the $n$-fold Kronecker power of the corresponding output distribution. The same conditions, with non-strict ordering for the monotones, are also necessary for such matrix majorization in large samples. Our result also gives conditions for the existence of a sequence of statistical maps that asymptotically (with vanishing error) convert a single copy of each input distribution to the corresponding output distribution with the help of a catalyst that is returned unchanged. Allowing for transformation with arbitrarily small error, we find conditions that are both necessary and sufficient for such catalytic matrix majorization. We derive our results by building on a general algebraic theory of preordered semirings recently developed by one of the authors. This also allows us to recover various existing results on majorization in large samples and in the catalytic regime as well as relative majorization in a unified manner.
In this paper we study the convergence of a second order finite volume approximation of the scalar conservation law. This scheme is based on the generalized Riemann problem (GRP) solver. We firstly investigate the stability of the GRP scheme and find that it might be entropy unstable when the shock wave is generated. By adding an artificial viscosity we propose a new stabilized GRP scheme. Under the assumption that numerical solutions are uniformly bounded, we prove consistency and convergence of this new GRP method.
This paper explores the application of the multiscale finite element method (MsFEM) to address steady-state Stokes-Darcy problems with BJS interface conditions in highly heterogeneous porous media. We assume the existence of multiscale features in the Darcy region and propose an algorithm for the multiscale Stokes-Darcy model. During the offline phase, we employ MsFEM to construct permeability-dependent offline bases for efficient coarse-grid simulation, with this process conducted in parallel to enhance its efficiency. In the online phase, we use the Robin-Robin algorithm to derive the model's solution. Subsequently, we conduct error analysis based on $L^2$ and $H^1$ norms, assuming certain periodic coefficients in the Darcy region. To validate our approach, we present extensive numerical tests on highly heterogeneous media, illustrating the results of the error analysis.
In this paper, we provide a simple proof of a generalization of the Gauss-Lucas theorem. By using methods of D-companion matrix, we get the majorization relationship between the zeros of convex combinations of incomplete polynomials and an origin polynomial. Moreover, we prove that the set of all zeros of all convex combinations of incomplete polynomials coincides with the closed convex hull of zeros of the original polynomial. The location of zeros of convex combinations of incomplete polynomials is determined.
It is known that standard stochastic Galerkin methods encounter challenges when solving partial differential equations with high-dimensional random inputs, which are typically caused by the large number of stochastic basis functions required. It becomes crucial to properly choose effective basis functions, such that the dimension of the stochastic approximation space can be reduced. In this work, we focus on the stochastic Galerkin approximation associated with generalized polynomial chaos (gPC), and explore the gPC expansion based on the analysis of variance (ANOVA) decomposition. A concise form of the gPC expansion is presented for each component function of the ANOVA expansion, and an adaptive ANOVA procedure is proposed to construct the overall stochastic Galerkin system. Numerical results demonstrate the efficiency of our proposed adaptive ANOVA stochastic Galerkin method for both diffusion and Helmholtz problems.
In the present paper, we propose a block variant of the extended Hessenberg process for computing approximations of matrix functions and other problems producing large-scale matrices. Applications to the computation of a matrix function such as f(A)V, where A is an nxn large sparse matrix, V is an nxp block with p<<n, and f is a function are presented. Solving shifted linear systems with multiple right hand sides are also given. Computing approximations of these matrix problems appear in many scientific and engineering applications. Different numerical experiments are provided to show the effectiveness of the proposed method for these problems.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.