Most existing word alignment methods rely on manual alignment datasets or parallel corpora, which limits their usefulness. Here, to mitigate the dependence on manual data, we broaden the source of supervision by relaxing the requirement for correct, fully-aligned, and parallel sentences. Specifically, we make noisy, partially aligned, and non-parallel paragraphs. We then use such a large-scale weakly-supervised dataset for word alignment pre-training via span prediction. Extensive experiments with various settings empirically demonstrate that our approach, which is named WSPAlign, is an effective and scalable way to pre-train word aligners without manual data. When fine-tuned on standard benchmarks, WSPAlign has set a new state-of-the-art by improving upon the best-supervised baseline by 3.3~6.1 points in F1 and 1.5~6.1 points in AER. Furthermore, WSPAlign also achieves competitive performance compared with the corresponding baselines in few-shot, zero-shot and cross-lingual tests, which demonstrates that WSPAlign is potentially more practical for low-resource languages than existing methods.
Multispectral pedestrian detection achieves better visibility in challenging conditions and thus has a broad application in various tasks, for which both the accuracy and computational cost are of paramount importance. Most existing approaches treat RGB and infrared modalities equally, typically adopting two symmetrical CNN backbones for multimodal feature extraction, which ignores the substantial differences between modalities and brings great difficulty for the reduction of the computational cost as well as effective crossmodal fusion. In this work, we propose a novel and efficient framework named WCCNet that is able to differentially extract rich features of different spectra with lower computational complexity and semantically rearranges these features for effective crossmodal fusion. Specifically, the discrete wavelet transform (DWT) allowing fast inference and training speed is embedded to construct a dual-stream backbone for efficient feature extraction. The DWT layers of WCCNet extract frequency components for infrared modality, while the CNN layers extract spatial-domain features for RGB modality. This methodology not only significantly reduces the computational complexity, but also improves the extraction of infrared features to facilitate the subsequent crossmodal fusion. Based on the well extracted features, we elaborately design the crossmodal rearranging fusion module (CMRF), which can mitigate spatial misalignment and merge semantically complementary features of spatially-related local regions to amplify the crossmodal complementary information. We conduct comprehensive evaluations on KAIST and FLIR benchmarks, in which WCCNet outperforms state-of-the-art methods with considerable computational efficiency and competitive accuracy. We also perform the ablation study and analyze thoroughly the impact of different components on the performance of WCCNet.
In high-dimensional generalized linear models, it is crucial to identify a sparse model that adequately accounts for response variation. Although the best subset section has been widely regarded as the Holy Grail of problems of this type, achieving either computational efficiency or statistical guarantees is challenging. In this article, we intend to surmount this obstacle by utilizing a fast algorithm to select the best subset with high certainty. We proposed and illustrated an algorithm for best subset recovery in regularity conditions. Under mild conditions, the computational complexity of our algorithm scales polynomially with sample size and dimension. In addition to demonstrating the statistical properties of our method, extensive numerical experiments reveal that it outperforms existing methods for variable selection and coefficient estimation. The runtime analysis shows that our implementation achieves approximately a fourfold speedup compared to popular variable selection toolkits like glmnet and ncvreg.
The performance of worst-case optimal join algorithms depends on the order in which the join attributes are processed. Selecting good orders before query execution is hard, due to the large space of possible orders and unreliable execution cost estimates in case of data skew or data correlation. We propose ADOPT, a query engine that combines adaptive query processing with a worst-case optimal join algorithm, which uses an order on the join attributes instead of a join order on relations. ADOPT divides query execution into episodes in which different attribute orders are tried. Based on run time feedback on attribute order performance, ADOPT converges quickly to near-optimal orders. It avoids redundant work across different orders via a novel data structure, keeping track of parts of the join input that have been successfully processed. It selects attribute orders to try via reinforcement learning, balancing the need for exploring new orders with the desire to exploit promising orders. In experiments with various data sets and queries, it outperforms baselines, including commercial and open-source systems using worst-case optimal join algorithms, whenever queries become complex and therefore difficult to optimize.
Hierarchical multi-label text classification aims to classify the input text into multiple labels, among which the labels are structured and hierarchical. It is a vital task in many real world applications, e.g. scientific literature archiving. In this paper, we survey the recent progress of hierarchical multi-label text classification, including the open sourced data sets, the main methods, evaluation metrics, learning strategies and the current challenges. A few future research directions are also listed for community to further improve this field.
Large language models (LLMs) have received increasing attention. However, due to the complexity of its capabilities, how to rationally evaluate the capabilities of LLMs is still a task to be solved. We propose the RoCar method, which utilizes the defined basic schemas to randomly construct a task graph and generates natural language evaluation tasks based on the task graph to evaluate the reasoning and memory abilities of LLMs respectively. Due to the very large randomness of the task construction process, it is possible to ensure that none of the LLMs to be tested has directly learned the evaluation tasks, guaranteeing the fairness of the evaluation method.
A CF explainer identifies the minimum modifications in the input that would alter the model's output to its complement. In other words, a CF explainer computes the minimum modifications required to cross the model's decision boundary. Current deep generative CF models often work with user-selected features rather than focusing on the discriminative features of the black-box model. Consequently, such CF examples may not necessarily lie near the decision boundary, thereby contradicting the definition of CFs. To address this issue, we propose in this paper a novel approach that leverages saliency maps to generate more informative CF explanations. Source codes are available at: //github.com/Amir-Samadi//Saliency_Aware_CF.
Large Language Models (LLMs) have shown remarkable effectiveness in various general-domain natural language processing (NLP) tasks. However, their performance in transportation safety domain tasks has been suboptimal, primarily attributed to the requirement for specialized transportation safety expertise in generating accurate responses [1]. To address this challenge, we introduce TrafficSafetyGPT, a novel LLAMA-based model, which has undergone supervised fine-tuning using TrafficSafety-2K dataset which has human labels from government produced guiding books and ChatGPT-generated instruction-output pairs. Our proposed TrafficSafetyGPT model and TrafficSafety-2K train dataset are accessible at //github.com/ozheng1993/TrafficSafetyGPT.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.