Be it in the IoT or automotive domain, implicit certificates are gaining ever more prominence in constrained embedded devices. They present a resource-efficient security solution against common threat concerns. The computational requirements are not the main issue anymore. The focus is now placed on determining a good balance between the provided security level and the derived threat model. A security aspect that often gets overlooked is the establishment of secure communication sessions, as most design solutions are based only on the use of static key derivation, and therefore, lack the perfect forward secrecy. This leaves the transmitted data open for potential future exposures by having keys tied to the certificates rather than the communication sessions. We aim to patch this gap, by presenting a design that utilizes the Station to Station (STS) protocol with implicit certificates. In addition, we propose potential protocol optimization implementation steps and run a comprehensive study on the performance and security level between the proposed design and the state-of-the-art key derivation protocols. In our comparative study, we show that with a slight computational increase of 20\% compared to a static ECDSA key derivation, we are able to mitigate many session-related security vulnerabilities that would otherwise remain open.
Inspired by the remarkable success of large neural networks, there has been significant interest in understanding the generalization performance of over-parameterized models. Substantial efforts have been invested in characterizing how optimization algorithms impact generalization through their "preferred" solutions, a phenomenon commonly referred to as implicit regularization. In particular, it has been argued that gradient descent (GD) induces an implicit $\ell_2$-norm regularization in regression and classification problems. However, the implicit regularization of different algorithms are confined to either a specific geometry or a particular class of learning problems, indicating a gap in a general approach for controlling the implicit regularization. To address this, we present a unified approach using mirror descent (MD), a notable generalization of GD, to control implicit regularization in both regression and classification settings. More specifically, we show that MD with the general class of homogeneous potential functions converges in direction to a generalized maximum-margin solution for linear classification problems, thereby answering a long-standing question in the classification setting. Further, we show that MD can be implemented efficiently and enjoys fast convergence under suitable conditions. Through comprehensive experiments, we demonstrate that MD is a versatile method to produce learned models with different regularizers, which in turn have different generalization performances.
Lower-end IoT devices typically have strict cost constraints that rule out usual security mechanisms available in general-purpose computers or higher-end devices. To secure low-end devices, various low-cost security architectures have been proposed for remote verification of their software state via integrity proofs. These proofs vary in terms of expressiveness, with simpler ones confirming correct binary presence, while more expressive ones support verification of arbitrary code execution. This article provides a holistic and systematic treatment of this family of architectures. It also compares (qualitatively and quantitatively) the types of software integrity proofs, respective architectural support, and associated costs. Finally, we outline some research directions and emerging challenges.
Generative AI has become pervasive in society, witnessing significant advancements in various domains. Particularly in the realm of Text-to-Image (TTI) models, Latent Diffusion Models (LDMs), showcase remarkable capabilities in generating visual content based on textual prompts. This paper addresses the potential of LDMs in representing local cultural concepts, historical figures, and endangered species. In this study, we use the cultural heritage of Rio Grande do Sul (RS), Brazil, as an illustrative case. Our objective is to contribute to the broader understanding of how generative models can help to capture and preserve the cultural and historical identity of regions. The paper outlines the methodology, including subject selection, dataset creation, and the fine-tuning process. The results showcase the images generated, alongside the challenges and feasibility of each concept. In conclusion, this work shows the power of these models to represent and preserve unique aspects of diverse regions and communities.
The digital era has seen a marked increase in financial fraud. edge ML emerged as a promising solution for smartphone payment services fraud detection, enabling the deployment of ML models directly on edge devices. This approach enables a more personalized real-time fraud detection. However, a significant gap in current research is the lack of a robust system for monitoring data distribution shifts in these distributed edge ML applications. Our work bridges this gap by introducing a novel open-source framework designed for continuous monitoring of data distribution shifts on a network of edge devices. Our system includes an innovative calculation of the Kolmogorov-Smirnov (KS) test over a distributed network of edge devices, enabling efficient and accurate monitoring of users behavior shifts. We comprehensively evaluate the proposed framework employing both real-world and synthetic financial transaction datasets and demonstrate the framework's effectiveness.
Watermark text spotting in document images can offer access to an often unexplored source of information, providing crucial evidence about a record's scope, audience and sometimes even authenticity. Stemming from the problem of text spotting, detecting and understanding watermarks in documents inherits the same hardships - in the wild, writing can come in various fonts, sizes and forms, making generic recognition a very difficult problem. To address the lack of resources in this field and propel further research, we propose a novel benchmark (K-Watermark) containing 65,447 data samples generated using Wrender, a watermark text patterns rendering procedure. A validity study using humans raters yields an authenticity score of 0.51 against pre-generated watermarked documents. To prove the usefulness of the dataset and rendering technique, we developed an end-to-end solution (Wextract) for detecting the bounding box instances of watermark text, while predicting the depicted text. To deal with this specific task, we introduce a variance minimization loss and a hierarchical self-attention mechanism. To the best of our knowledge, we are the first to propose an evaluation benchmark and a complete solution for retrieving watermarks from documents surpassing baselines by 5 AP points in detection and 4 points in character accuracy.
With the increasing demand for computing capability given limited resource and power budgets, it is crucial to deploy applications to customized accelerators like FPGAs. However, FPGA programming is non-trivial. Although existing high-level synthesis (HLS) tools improve productivity to a certain extent, they are limited in scope and capability to support sufficient FPGA-oriented optimizations. This paper focuses on FPGA-based accelerators and proposes POM, an optimizing framework built on multi-level intermediate representation (MLIR). POM has several features which demonstrate its scope and capability of performance optimization. First, most HLS tools depend exclusively on a single-level IR to perform all the optimizations, introducing excessive information into the IR and making debugging an arduous task. In contrast, POM introduces three layers of IR to perform operations at suitable abstraction levels, streamlining the implementation and debugging process and exhibiting better flexibility, extensibility, and systematicness. Second, POM integrates the polyhedral model into MLIR, enabling advanced dependence analysis and various FPGA-oriented loop transformations. By representing nested loops with integer sets and maps, loop transformations can be conducted conveniently through manipulations on polyhedral semantics. Finally, to further relieve design effort, POM has a user-friendly programming interface (DSL) that allows a concise description of computation and includes a rich collection of scheduling primitives. An automatic design space exploration (DSE) engine is provided to search for high-performance optimization schemes efficiently and generate optimized accelerators automatically. Experimental results show that POM achieves a $6.46\times$ average speedup on typical benchmark suites and a $6.06\times$ average speedup on real-world applications compared to the state-of-the-art.
With Artificial Intelligence (AI) becoming ubiquitous in every application domain, the need for explanations is paramount to enhance transparency and trust among non-technical users. Despite the potential shown by Explainable AI (XAI) for enhancing understanding of complex AI systems, most XAI methods are designed for technical AI experts rather than non-technical consumers. Consequently, such explanations are overwhelmingly complex and seldom guide users in achieving their desired predicted outcomes. This paper presents ongoing research for crafting XAI systems tailored to guide users in achieving desired outcomes through improved human-AI interactions. This paper highlights the research objectives and methods, key takeaways and implications learned from user studies. It outlines open questions and challenges for enhanced human-AI collaboration, which the author aims to address in future work.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.