To minimize property loss and death count in terror attacks and other emergent scenarios, attention given to timely and effective evacuation cannot be enough. Due to limited evacuation resource, i.e., number of available exits, there exists interdependence among pedestrians such as cooperation, competition and herd effect. Thus human factors - more specifically, pedestrians' behavior in emergency evacuation - play a significant role in evacuation research. Effective evacuation can only be reached when route planning are considered in conjunction with psychological dynamics, which is often ignored. As another drawback, previous research assumes the environment including available exits as stationary. However, we note that during emergency, some exits which are not often utilized in normal times are opened, which potentially helps if pedestrians are aware of them. In this paper, we analyze the effect of pedestrians' behavior, i.e., herd effect and knowledge of changing environment with Cellular Automata (CA) simulation. Results of the simulation show the harmful effect of herd effect as well as highlight the importance of timely informing pedestrians of environmental change. Accordingly, we propose policy and procedural recommendations for emergency management of large, crowded structures. Our future work includes considering more human factors and applying our model to log data provided by videos in public venues, which can further show effectiveness of our model in real scenarios.
This paper will describe and analyze a new phenomenon that was not known before, which we call "Early Transferability". Its essence is that the adversarial perturbations transfer among different networks even at extremely early stages in their training. In fact, one can initialize two networks with two different independent choices of random weights and measure the angle between their adversarial perturbations after each step of the training. What we discovered was that these two adversarial directions started to align with each other already after the first few training steps (which typically use only a small fraction of the available training data), even though the accuracy of the two networks hadn't started to improve from their initial bad values due to the early stage of the training. The purpose of this paper is to present this phenomenon experimentally and propose plausible explanations for some of its properties.
In this paper we provide a rigorous convergence analysis for the renowned particle swarm optimization method by using tools from stochastic calculus and the analysis of partial differential equations. Based on a time-continuous formulation of the particle dynamics as a system of stochastic differential equations, we establish convergence to a global minimizer of a possibly nonconvex and nonsmooth objective function in two steps. First, we prove consensus formation of an associated mean-field dynamics by analyzing the time-evolution of the variance of the particle distribution. We then show that this consensus is close to a global minimizer by employing the asymptotic Laplace principle and a tractability condition on the energy landscape of the objective function. These results allow for the usage of memory mechanisms, and hold for a rich class of objectives provided certain conditions of well-preparation of the hyperparameters and the initial datum. In a second step, at least for the case without memory effects, we provide a quantitative result about the mean-field approximation of particle swarm optimization, which specifies the convergence of the interacting particle system to the associated mean-field limit. Combining these two results allows for global convergence guarantees of the numerical particle swarm optimization method with provable polynomial complexity. To demonstrate the applicability of the method we propose an efficient and parallelizable implementation, which is tested in particular on a competitive and well-understood high-dimensional benchmark problem in machine learning.
As a highly ill-posed issue, single image super-resolution (SISR) has been widely investigated in recent years. The main task of SISR is to recover the information loss caused by the degradation procedure. According to the Nyquist sampling theory, the degradation leads to aliasing effect and makes it hard to restore the correct textures from low-resolution (LR) images. In practice, there are correlations and self-similarities among the adjacent patches in the natural images. This paper considers the self-similarity and proposes a hierarchical image super-resolution network (HSRNet) to suppress the influence of aliasing. We consider the SISR issue in the optimization perspective, and propose an iterative solution pattern based on the half-quadratic splitting (HQS) method. To explore the texture with local image prior, we design a hierarchical exploration block (HEB) and progressive increase the receptive field. Furthermore, multi-level spatial attention (MSA) is devised to obtain the relations of adjacent feature and enhance the high-frequency information, which acts as a crucial role for visual experience. Experimental result shows HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
In many areas of interest, modern risk assessment requires estimation of the extremal behaviour of sums of random variables. We derive the first order upper-tail behaviour of the weighted sum of bivariate random variables under weak assumptions on their marginal distributions and their copula. The extremal behaviour of the marginal variables is characterised by the generalised Pareto distribution and their extremal dependence through subclasses of the limiting representations of Ledford and Tawn (1997) and Heffernan and Tawn (2004). We find that the upper tail behaviour of the aggregate is driven by different factors dependent on the signs of the marginal shape parameters; if they are both negative, the extremal behaviour of the aggregate is determined by both marginal shape parameters and the coefficient of asymptotic independence (Ledford and Tawn, 1996); if they are both positive or have different signs, the upper-tail behaviour of the aggregate is given solely by the largest marginal shape. We also derive the aggregate upper-tail behaviour for some well known copulae which reveals further insight into the tail structure when the copula falls outside the conditions for the subclasses of the limiting dependence representations.
Humans are naturally endowed with the ability to write in a particular style. They can, for instance, re-phrase a formal letter in an informal way, convey a literal message with the use of figures of speech or edit a novel mimicking the style of some well-known authors. Automating this form of creativity constitutes the goal of style transfer. As a natural language generation task, style transfer aims at rewriting existing texts, and specifically, it creates paraphrases that exhibit some desired stylistic attributes. From a practical perspective, it envisions beneficial applications, like chat-bots that modulate their communicative style to appear empathetic, or systems that automatically simplify technical articles for a non-expert audience. Several style-aware paraphrasing methods have attempted to tackle style transfer. A handful of surveys give a methodological overview of the field, but they do not support researchers to focus on specific styles. With this paper, we aim at providing a comprehensive discussion of the styles that have received attention in the transfer task. We organize them in a hierarchy, highlighting the challenges for the definition of each of them, and pointing out gaps in the current research landscape. The hierarchy comprises two main groups. One encompasses styles that people modulate arbitrarily, along the lines of registers and genres. The other group corresponds to unintentionally expressed styles, due to an author's personal characteristics. Hence, our review shows how these groups relate to one another, and where specific styles, including some that have not yet been explored, belong in the hierarchy. Moreover, we summarize the methods employed for different stylistic families, hinting researchers towards those that would be the most fitting for future research.
Our main result shows that when agents' private information about an event are independent conditioning on the event's outcome, then, after an initial announcement, whenever agents have similar beliefs about the outcome, their information is aggregated. That is, there is no false consensus. Our main result has a short proof based on a natural information theoretic framework. A key ingredient of the framework is the equivalence between the sign of the ``interaction information'' and a super/sub-additive property of the value of people's information. This provides an intuitive interpretation and an interesting application of the interaction information, which measures the amount of information shared by three random variables. We illustrate the power of this information theoretic framework by reproving two additional results within it: 1) that agents quickly agree when while announcing beliefs in round robin fashion [Aaronson 2005]; and 2) results from [Chen et al 2010] on when prediction market agents should release information to maximize their payment. We also interpret the information theoretic framework and the above results in prediction markets by proving that the expected reward of revealing information is the conditional mutual information of the information revealed.
Democratization of AI involves training and deploying machine learning models across heterogeneous and potentially massive environments. Diversity of data opens up a number of possibilities to advance AI systems, but also introduces pressing concerns such as privacy, security, and equity that require special attention. This work shows that it is theoretically impossible to design a rational learning algorithm that has the ability to successfully learn across heterogeneous environments, which we decoratively call collective intelligence (CI). By representing learning algorithms as choice correspondences over a hypothesis space, we are able to axiomatize them with essential properties. Unfortunately, the only feasible algorithm compatible with all of the axioms is the standard empirical risk minimization (ERM) which learns arbitrarily from a single environment. Our impossibility result reveals informational incomparability between environments as one of the foremost obstacles for researchers who design novel algorithms that learn from multiple environments, which sheds light on prerequisites for success in critical areas of machine learning such as out-of-distribution generalization, federated learning, algorithmic fairness, and multi-modal learning.
Lately, studying social dynamics in interacting agents has been boosted by the power of computer models, which bring the richness of qualitative work, while offering the precision, transparency, extensiveness, and replicability of statistical and mathematical approaches. A particular set of phenomena for the study of social dynamics is Web collaborative platforms. A dataset of interest is r/place, a collaborative social experiment held in 2017 on Reddit, which consisted of a shared online canvas of 1000 pixels by 1000 pixels co-edited by over a million recorded users over 72 hours. In this paper, we designed and compared two methods to analyze the dynamics of this experiment. Our first method consisted in approximating the set of 2D cellular-automata-like rules used to generate the canvas images and how these rules change over time. The second method consisted in a convolutional neural network (CNN) that learned an approximation to the generative rules in order to generate the complex outcomes of the canvas. Our results indicate varying context-size dependencies for the predictability of different objects in r/place in time and space. They also indicate a surprising peak in difficulty to statistically infer behavioral rules towards the middle of the social experiment, while user interactions did not drop until before the end. The combination of our two approaches, one rule-based and the other statistical CNN-based, shows the ability to highlight diverse aspects of analyzing social dynamics.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.