Computer science research has led to many breakthrough innovations but has also been scrutinized for enabling technology that has negative, unintended consequences for society. Given the increasing discussions of ethics in the news and among researchers, we interviewed 20 researchers in various CS sub-disciplines to identify whether and how they consider potential unintended consequences of their research innovations. We show that considering unintended consequences is generally seen as important but rarely practiced. Principal barriers are a lack of formal process and strategy as well as the academic practice that prioritizes fast progress and publications. Drawing on these findings, we discuss approaches to support researchers in routinely considering unintended consequences, from bringing diverse perspectives through community participation to increasing incentives to investigate potential consequences. We intend for our work to pave the way for routine explorations of the societal implications of technological innovations before, during, and after the research process.
The ability of artificial intelligence (AI) systems to perceive and comprehend audio signals is crucial for many applications. Although significant progress has been made in this area since the development of AudioSet, most existing models are designed to map audio inputs to pre-defined, discrete sound label sets. In contrast, humans possess the ability to not only classify sounds into coarse-grained categories, but also to listen to the details of the sounds, explain the reason for the predictions, think what the sound infers, and understand the scene and what action needs to be taken. Such capabilities beyond perception are not yet present in existing audio models. On the other hand, modern large language models (LLMs) exhibit emerging reasoning ability but they lack audio perception capabilities. Therefore, we ask the question: can we build an AI model that has both audio perception and a reasoning ability? In this paper, we propose a novel audio foundation model, called LTU (Listen, Think, and Understand). To train LTU, we created a new OpenAQA-5M dataset consisting of 1.9 million closed-ended and 3.7 million open-ended, diverse (audio, question, answer) tuples, and used an autoregressive training framework and a perception-to-understanding curriculum. LTU demonstrates strong performance and generalization ability on conventional audio tasks such as classification and captioning. Moreover, it exhibits remarkable reasoning and comprehension abilities in the audio domain. To the best of our knowledge, LTU is the first audio-enabled large language model that bridges audio perception with advanced reasoning.
Toxic language, such as hate speech, can deter users from participating in online communities and enjoying popular platforms. Previous approaches to detecting toxic language and norm violations have been primarily concerned with conversations from online forums and social media, such as Reddit and Twitter. These approaches are less effective when applied to conversations on live-streaming platforms, such as Twitch and YouTube Live, as each comment is only visible for a limited time and lacks a thread structure that establishes its relationship with other comments. In this work, we share the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms. We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch. We articulate several facets of live-stream data that differ from other forums, and demonstrate that existing models perform poorly in this setting. By conducting a user study, we identify the informational context humans use in live-stream moderation, and train models leveraging context to identify norm violations. Our results show that appropriate contextual information can boost moderation performance by 35\%.
Knowledge Graphs (KGs) play a crucial role in enhancing e-commerce system performance by providing structured information about entities and their relationships, such as complementary or substitutable relations between products or product types, which can be utilized in recommender systems. However, relation labeling in KGs remains a challenging task due to the dynamic nature of e-commerce domains and the associated cost of human labor. Recently, breakthroughs in Large Language Models (LLMs) have shown surprising results in numerous natural language processing tasks. In this paper, we conduct an empirical study of LLMs for relation labeling in e-commerce KGs, investigating their powerful learning capabilities in natural language and effectiveness in predicting relations between product types with limited labeled data. We evaluate various LLMs, including PaLM and GPT-3.5, on benchmark datasets, demonstrating their ability to achieve competitive performance compared to humans on relation labeling tasks using just 1 to 5 labeled examples per relation. Additionally, we experiment with different prompt engineering techniques to examine their impact on model performance. Our results show that LLMs significantly outperform existing KG completion models in relation labeling for e-commerce KGs and exhibit performance strong enough to replace human labeling.
The field of Artificial Intelligence (AI) is focusing on creating automated decision-making (ADM) systems that operate as close as possible to human-like intelligence. This effort has pushed AI researchers into exploring cognitive fields like psychology. The work of Daniel Kahneman and the late Amos Tversky on biased human decision-making, including the study of the conjunction fallacy, has experienced a second revival because of this. Under the conjunction fallacy a human decision-maker will go against basic probability laws and rank as more likely a conjunction over one of its parts. It has been proven overtime through a set of experiments with the Linda Problem being the most famous one. Although this interdisciplinary effort is welcomed, we fear that AI researchers ignore the driving force behind the conjunction fallacy as captured by the Linda Problem: the fact that Linda must be stereotypically described as a woman. In this paper we revisit the Linda Problem and formulate it as a fairness problem. In doing so we introduce perception as a parameter of interest through the structural causal perception framework. Using an illustrative decision-making example, we showcase the proposed conceptual framework and its potential impact for developing fair ADM systems.
The pervasive uncertainty and dynamic nature of real-world environments present significant challenges for the widespread implementation of machine-driven Intelligent Decision-Making (IDM) systems. Consequently, IDM should possess the ability to continuously acquire new skills and effectively generalize across a broad range of applications. The advancement of Artificial General Intelligence (AGI) that transcends task and application boundaries is critical for enhancing IDM. Recent studies have extensively investigated the Transformer neural architecture as a foundational model for various tasks, including computer vision, natural language processing, and reinforcement learning. We propose that a Foundation Decision Model (FDM) can be developed by formulating diverse decision-making tasks as sequence decoding tasks using the Transformer architecture, offering a promising solution for expanding IDM applications in complex real-world situations. In this paper, we discuss the efficiency and generalization improvements offered by a foundation decision model for IDM and explore its potential applications in multi-agent game AI, production scheduling, and robotics tasks. Lastly, we present a case study demonstrating our FDM implementation, DigitalBrain (DB1) with 1.3 billion parameters, achieving human-level performance in 870 tasks, such as text generation, image captioning, video game playing, robotic control, and traveling salesman problems. As a foundation decision model, DB1 represents an initial step toward more autonomous and efficient real-world IDM applications.
Prediction algorithms that quantify the expected benefit of a given treatment conditional on patient characteristics can critically inform medical decisions. Quantifying the performance of treatment benefit prediction algorithms is an active area of research. A recently proposed metric, the concordance statistic for benefit (cfb), evaluates the discriminative ability of a treatment benefit predictor by directly extending the concept of the concordance statistic from a risk model with a binary outcome to a model for treatment benefit. In this work, we scrutinize $cfb$ on multiple fronts. Through numerical examples and theoretical developments, we show that cfb is not a proper scoring rule. We also show that it is sensitive to the unestimable correlation between counterfactual outcomes and to the definition of matched pairs. We argue that measures of statistical dispersion applied to predicted benefits do not suffer from these issues and can be an alternative metric for the discriminatory performance of treatment benefit predictors.
Imagine conducting a study to determine whether users rate the visual aesthetics of your website more positively than your competitors. To assess users' perceptions of both websites, you use a validated survey scale for visual aesthetics, and you observe a statistically significant difference in users' ratings of the visual aesthetics of the two websites of 0.5 on a 7-point Likert-type scale. However, determining whether such a difference is practically (and theoretically) meaningful is challenging. In this paper, I follow the procedure outlined in Anvari & Lakens (2021) to determine the smallest subjectively experienced difference in VisAWI-s ratings using an anchor-based method. A sample of N = 249 participants rated and compared screenshots of eight websites in an online survey. I determined an estimate of a population-specific mean difference of 0.4, or in POMP units 6.58%, which translates to a mean difference of 0.46 with the 7-point Likert-type scale of the VisAWI-s. These values suggest that differences in VisAWI-s scores exceeding these estimates, such as the 0.5 mentioned above, are likely noticeable and meaningful to users. However, the estimate of this smallest subjectively experienced difference is affected by the overall visual aesthetics rating of the stimuli used. Researchers can use this effect size to inform study design and sample size planning. Still, whenever possible, they should aim to determine a domain- and research-design-specific smallest effect size of interest.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.