Counterfactuals -- expressing what might have been true under different circumstances -- have been widely applied in statistics and machine learning to help understand causal relationships. More recently, counterfactuals have begun to emerge as a technique being applied within visualization research. However, it remains unclear to what extent counterfactuals can aid with visual data communication. In this paper, we primarily focus on assessing the quality of users' understanding of data when provided with counterfactual visualizations. We propose a preliminary model of causality comprehension by connecting theories from causal inference and visual data communication. Leveraging this model, we conducted an empirical study to explore how counterfactuals can improve users' understanding of data in static visualizations. Our results indicate that visualizing counterfactuals had a positive impact on participants' interpretations of causal relations within datasets. These results motivate a discussion of how to more effectively incorporate counterfactuals into data visualizations.
The notion of robustness in XAI refers to the observed variations in the explanation of the prediction of a learned model with respect to changes in the input leading to that prediction. Intuitively, if the input being explained is modified slightly subtly enough so as to not change the prediction of the model too much, then we would expect that the explanation provided for that new input does not change much either. We argue that a combination through discriminative averaging of ensembles weak learners explanations can improve the robustness of explanations in ensemble methods.This approach has been implemented and tested with post-hoc SHAP method and Random Forest ensemble with successful results. The improvements obtained have been measured quantitatively and some insights into the explicability robustness in ensemble methods are presented.
In multimedia understanding tasks, corrupted samples pose a critical challenge, because when fed to machine learning models they lead to performance degradation. In the past, three groups of approaches have been proposed to handle noisy data: i) enhancer and denoiser modules to improve the quality of the noisy data, ii) data augmentation approaches, and iii) domain adaptation strategies. All the aforementioned approaches come with drawbacks that limit their applicability; the first has high computational costs and requires pairs of clean-corrupted data for training, while the others only allow deployment of the same task/network they were trained on (\ie, when upstream and downstream task/network are the same). In this paper, we propose SyMPIE to solve these shortcomings. To this end, we design a small, modular, and efficient (just 2GFLOPs to process a Full HD image) system to enhance input data for robust downstream multimedia understanding with minimal computational cost. Our SyMPIE is pre-trained on an upstream task/network that should not match the downstream ones and does not need paired clean-corrupted samples. Our key insight is that most input corruptions found in real-world tasks can be modeled through global operations on color channels of images or spatial filters with small kernels. We validate our approach on multiple datasets and tasks, such as image classification (on ImageNetC, ImageNetC-Bar, VizWiz, and a newly proposed mixed corruption benchmark named ImageNetC-mixed) and semantic segmentation (on Cityscapes, ACDC, and DarkZurich) with consistent improvements of about 5\% relative accuracy gain across the board. The code of our approach and the new ImageNetC-mixed benchmark will be made available upon publication.
In statistics and machine learning, logistic regression is a widely-used supervised learning technique primarily employed for binary classification tasks. When the number of observations greatly exceeds the number of predictor variables, we present a simple, randomized sampling-based algorithm for logistic regression problem that guarantees high-quality approximations to both the estimated probabilities and the overall discrepancy of the model. Our analysis builds upon two simple structural conditions that boil down to randomized matrix multiplication, a fundamental and well-understood primitive of randomized numerical linear algebra. We analyze the properties of estimated probabilities of logistic regression when leverage scores are used to sample observations, and prove that accurate approximations can be achieved with a sample whose size is much smaller than the total number of observations. To further validate our theoretical findings, we conduct comprehensive empirical evaluations. Overall, our work sheds light on the potential of using randomized sampling approaches to efficiently approximate the estimated probabilities in logistic regression, offering a practical and computationally efficient solution for large-scale datasets.
The impressive achievements of transformers force NLP researchers to delve into how these models represent the underlying structure of natural language. In this paper, we propose a novel standpoint to investigate the above issue: using typological similarities among languages to observe how their respective monolingual models encode structural information. We aim to layer-wise compare transformers for typologically similar languages to observe whether these similarities emerge for particular layers. For this investigation, we propose to use Centered Kernel Alignment to measure similarity among weight matrices. We found that syntactic typological similarity is consistent with the similarity between the weights in the middle layers, which are the pretrained BERT layers to which syntax encoding is generally attributed. Moreover, we observe that a domain adaptation on semantically equivalent texts enhances this similarity among weight matrices.
Model editing aims to precisely modify the behaviours of large language models (LLMs) on specific knowledge while keeping irrelevant knowledge unchanged. It has been proven effective in resolving hallucination and out-of-date issues in LLMs. As a result, it can boost the application of LLMs in many critical domains (e.g., medical domain), where the hallucination is not tolerable. In this paper, we propose two model editing studies and validate them in the medical domain: (1) directly editing the factual medical knowledge and (2) editing the explanations to facts. Meanwhile, we observed that current model editing methods struggle with the specialization and complexity of medical knowledge. Therefore, we propose MedLaSA, a novel Layer-wise Scalable Adapter strategy for medical model editing. It employs causal tracing to identify the precise location of knowledge in neurons and then introduces scalable adapters into the dense layers of LLMs. These adapters are assigned scaling values based on the corresponding specific knowledge. To evaluate the editing impact, we build two benchmark datasets and introduce a series of challenging and comprehensive metrics. Extensive experiments on medical LLMs demonstrate the editing efficiency of MedLaSA, without affecting irrelevant knowledge that is not edited.
Despite their popularity in the field of continuous optimisation, second-order quasi-Newton methods are challenging to apply in machine learning, as the Hessian matrix is intractably large. This computational burden is exacerbated by the need to address non-convexity, for instance by modifying the Hessian's eigenvalues as in Saddle-Free Newton methods. We propose an optimisation algorithm which addresses both of these concerns - to our knowledge, the first efficiently-scalable optimisation algorithm to asymptotically use the exact inverse Hessian with absolute-value eigenvalues. Our method frames the problem as a series which principally square-roots and inverts the squared Hessian, then uses it to precondition a gradient vector, all without explicitly computing or eigendecomposing the Hessian. A truncation of this infinite series provides a new optimisation algorithm which is scalable and comparable to other first- and second-order optimisation methods in both runtime and optimisation performance. We demonstrate this in a variety of settings, including a ResNet-18 trained on CIFAR-10.
This manuscript investigates the information-theoretic limits of integrated sensing and communications (ISAC), aiming for simultaneous reliable communication and precise channel state estimation. We model such a system with a state-dependent discrete memoryless channel (SD-DMC) with present or absent channel feedback and generalized side information at the transmitter and the receiver, where the joint task of message decoding and state estimation is performed at the receiver. The relationship between the achievable communication rate and estimation error, the capacity-distortion (C-D) trade-off, is characterized across different causality levels of the side information. This framework is shown to be capable of modeling various practical scenarios by assigning the side information with different meanings, including monostatic and bistatic radar systems. The analysis is then extended to the two-user degraded broadcast channel, and we derive an achievable C-D region that is tight under certain conditions. To solve the optimization problem arising in the computation of C-D functions/regions, we propose a proximal block coordinate descent (BCD) method, prove its convergence to a stationary point, and derive a stopping criterion. Finally, several representative examples are studied to demonstrate the versatility of our framework and the effectiveness of the proposed algorithm.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.