亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies a new task of federated learning (FL) for semantic parsing, where multiple clients collaboratively train one global model without sharing their semantic parsing data. By leveraging data from multiple clients, the FL paradigm can be especially beneficial for clients that have little training data to develop a data-hungry neural semantic parser on their own. We propose an evaluation setup to study this task, where we re-purpose widely-used single-domain text-to-SQL datasets as clients to form a realistic heterogeneous FL setting and collaboratively train a global model. As standard FL algorithms suffer from the high client heterogeneity in our realistic setup, we further propose a novel LOss Reduction Adjusted Re-weighting (Lorar) mechanism to mitigate the performance degradation, which adjusts each client's contribution to the global model update based on its training loss reduction during each round. Our intuition is that the larger the loss reduction, the further away the current global model is from the client's local optimum, and the larger weight the client should get. By applying Lorar to three widely adopted FL algorithms (FedAvg, FedOPT and FedProx), we observe that their performance can be improved substantially on average (4%-20% absolute gain under MacroAvg) and that clients with smaller datasets enjoy larger performance gains. In addition, the global model converges faster for almost all the clients.

相關內容

Maximizing long-term rewards is the primary goal in sequential decision-making problems. The majority of existing methods assume that side information is freely available, enabling the learning agent to observe all features' states before making a decision. In real-world problems, however, collecting beneficial information is often costly. That implies that, besides individual arms' reward, learning the observations of the features' states is essential to improve the decision-making strategy. The problem is aggravated in a non-stationary environment where reward and cost distributions undergo abrupt changes over time. To address the aforementioned dual learning problem, we extend the contextual bandit setting and allow the agent to observe subsets of features' states. The objective is to maximize the long-term average gain, which is the difference between the accumulated rewards and the paid costs on average. Therefore, the agent faces a trade-off between minimizing the cost of information acquisition and possibly improving the decision-making process using the obtained information. To this end, we develop an algorithm that guarantees a sublinear regret in time. Numerical results demonstrate the superiority of our proposed policy in a real-world scenario.

In this work we perform a scoping review of the current literature on the detection of throat cancer from speech recordings using machine learning and artificial intelligence. We find 22 papers within this area and discuss their methods and results. We split these papers into two groups - nine performing binary classification, and 13 performing multi-class classification. The papers present a range of methods with neural networks being most commonly implemented. Many features are also extracted from the audio before classification, with the most common bring mel-frequency cepstral coefficients. None of the papers found in this search have associated code repositories and as such are not reproducible. Therefore, we create a publicly available code repository of our own classifiers. We use transfer learning on a multi-class problem, classifying three pathologies and healthy controls. Using this technique we achieve an unweighted average recall of 53.54%, sensitivity of 83.14%, and specificity of 64.00%. We compare our classifiers with the results obtained on the same dataset and find similar results.

Zero-shot learning (ZSL) aims to recognize classes that do not have samples in the training set. One representative solution is to directly learn an embedding function associating visual features with corresponding class semantics for recognizing new classes. Many methods extend upon this solution, and recent ones are especially keen on extracting rich features from images, e.g. attribute features. These attribute features are normally extracted within each individual image; however, the common traits for features across images yet belonging to the same attribute are not emphasized. In this paper, we propose a new framework to boost ZSL by explicitly learning attribute prototypes beyond images and contrastively optimizing them with attribute-level features within images. Besides the novel architecture, two elements are highlighted for attribute representations: a new prototype generation module is designed to generate attribute prototypes from attribute semantics; a hard example-based contrastive optimization scheme is introduced to reinforce attribute-level features in the embedding space. We explore two alternative backbones, CNN-based and transformer-based, to build our framework and conduct experiments on three standard benchmarks, CUB, SUN, AwA2. Results on these benchmarks demonstrate that our method improves the state of the art by a considerable margin. Our codes will be available at //github.com/dyabel/CoAR-ZSL.git

New systems employ Machine Learning to sift through large knowledge sources, creating flexible Large Language Models. These models discern context and predict sequential information in various communication forms. Generative AI, leveraging Transformers, generates textual or visual outputs mimicking human responses. It proposes one or multiple contextually feasible solutions for a user to contemplate. However, generative AI does not currently support traceability of ideas, a useful feature provided by search engines indicating origin of information. The narrative style of generative AI has gained positive reception. People learn from stories. Yet, early ChatGPT efforts had difficulty with truth, reference, calculations, and aspects like accurate maps. Current capabilities of referencing locations and linking to apps seem to be better catered by the link-centric search methods we've used for two decades. Deploying truly believable solutions extends beyond simulating contextual relevance as done by generative AI. Combining the creativity of generative AI with the provenance of internet sources in hybrid scenarios could enhance internet usage. Generative AI, viewed as drafts, stimulates thinking, offering alternative ideas for final versions or actions. Scenarios for information requests are considered. We discuss how generative AI can boost idea generation by eliminating human bias. We also describe how search can verify facts, logic, and context. The user evaluates these generated ideas for selection and usage. This paper introduces a system for knowledge workers, Generate And Search Test, enabling individuals to efficiently create solutions previously requiring top collaborations of experts.

In the problem of online learning for changing environments, data are sequentially received one after another over time, and their distribution assumptions may vary frequently. Although existing methods demonstrate the effectiveness of their learning algorithms by providing a tight bound on either dynamic regret or adaptive regret, most of them completely ignore learning with model fairness, defined as the statistical parity across different sub-population (e.g., race and gender). Another drawback is that when adapting to a new environment, an online learner needs to update model parameters with a global change, which is costly and inefficient. Inspired by the sparse mechanism shift hypothesis, we claim that changing environments in online learning can be attributed to partial changes in learned parameters that are specific to environments and the rest remain invariant to changing environments. To this end, in this paper, we propose a novel algorithm under the assumption that data collected at each time can be disentangled with two representations, an environment-invariant semantic factor and an environment-specific variation factor. The semantic factor is further used for fair prediction under a group fairness constraint. To evaluate the sequence of model parameters generated by the learner, a novel regret is proposed in which it takes a mixed form of dynamic and static regret metrics followed by a fairness-aware long-term constraint. The detailed analysis provides theoretical guarantees for loss regret and violation of cumulative fairness constraints. Empirical evaluations on real-world datasets demonstrate our proposed method sequentially outperforms baseline methods in model accuracy and fairness.

In this work, we propose a communication-efficient hierarchical federated learning algorithm for distributed setups including core servers and multiple edge servers with clusters of devices. Assuming different learning tasks, clusters with a same task collaborate. To implement the algorithm over wireless links, we propose a scalable clustered over-the-air aggregation scheme for the uplink with a bandwidth-limited broadcast scheme for the downlink that requires only a single resource block for each algorithm iteration, independent of the number of edge servers and devices. This setup is faced with interference of devices in the uplink and interference of edge servers in the downlink that are to be modeled rigorously. We first develop a spatial model for the setup by modeling devices as a Poisson cluster process over the edge servers and quantify uplink and downlink error terms due to the interference. Accordingly, we present a comprehensive mathematical approach to derive the convergence bound for the proposed algorithm including any number of collaborating clusters and provide special cases and design remarks. Finally, we show that despite the interference and data heterogeneity, the proposed algorithm not only achieves high learning accuracy for a variety of parameters but also significantly outperforms the conventional hierarchical learning algorithm.

Federated learning (FL) has evolved as a prominent method for edge devices to cooperatively create a unified prediction model while securing their sensitive training data local to the device. Despite the existence of numerous research frameworks for simulating FL algorithms, they do not facilitate comprehensive deployment for automatic speech recognition tasks on heterogeneous edge devices. This is where Ed-Fed, a comprehensive and generic FL framework, comes in as a foundation for future practical FL system research. We also propose a novel resource-aware client selection algorithm to optimise the waiting time in the FL settings. We show that our approach can handle the straggler devices and dynamically set the training time for the selected devices in a round. Our evaluation has shown that the proposed approach significantly optimises waiting time in FL compared to conventional random client selection methods.

Many compression techniques have been proposed to reduce the communication overhead of Federated Learning training procedures. However, these are typically designed for compressing model updates, which are expected to decay throughout training. As a result, such methods are inapplicable to downlink (i.e., from the parameter server to clients) compression in the cross-device setting, where heterogeneous clients $\textit{may appear only once}$ during training and thus must download the model parameters. Accordingly, we propose $\textsf{DoCoFL}$ -- a new framework for downlink compression in the cross-device setting. Importantly, $\textsf{DoCoFL}$ can be seamlessly combined with many uplink compression schemes, rendering it suitable for bi-directional compression. Through extensive evaluation, we show that $\textsf{DoCoFL}$ offers significant bi-directional bandwidth reduction while achieving competitive accuracy to that of a baseline without any compression.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

北京阿比特科技有限公司