亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Centralized training with decentralized execution (CTDE) is a widely-used learning paradigm that has achieved significant success in complex tasks. However, partial observability issues and the absence of effectively shared signals between agents often limit its effectiveness in fostering cooperation. While communication can address this challenge, it simultaneously reduces the algorithm's practicality. Drawing inspiration from human team cooperative learning, we propose a novel paradigm that facilitates a gradual shift from explicit communication to tacit cooperation. In the initial training stage, we promote cooperation by sharing relevant information among agents and concurrently reconstructing this information using each agent's local trajectory. We then combine the explicitly communicated information with the reconstructed information to obtain mixed information. Throughout the training process, we progressively reduce the proportion of explicitly communicated information, facilitating a seamless transition to fully decentralized execution without communication. Experimental results in various scenarios demonstrate that the performance of our method without communication can approaches or even surpasses that of QMIX and communication-based methods.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Learning · Networking · 生成式對抗網絡 · GANs ·
2023 年 6 月 13 日

Training Generative Adversarial Networks (GANs) remains a challenging problem. The discriminator trains the generator by learning the distribution of real/generated data. However, the distribution of generated data changes throughout the training process, which is difficult for the discriminator to learn. In this paper, we propose a novel method for GANs from the viewpoint of online continual learning. We observe that the discriminator model, trained on historically generated data, often slows down its adaptation to the changes in the new arrival generated data, which accordingly decreases the quality of generated results. By treating the generated data in training as a stream, we propose to detect whether the discriminator slows down the learning of new knowledge in generated data. Therefore, we can explicitly enforce the discriminator to learn new knowledge fast. Particularly, we propose a new discriminator, which automatically detects its retardation and then dynamically masks its features, such that the discriminator can adaptively learn the temporally-vary distribution of generated data. Experimental results show our method outperforms the state-of-the-art approaches.

We report competitive results on RobustBench for CIFAR and SVHN using a simple yet effective baseline approach. Our approach involves a training protocol that integrates rescaled square loss, cyclic learning rates, and erasing-based data augmentation. The outcomes we have achieved are comparable to those of the model trained with state-of-the-art techniques, which is currently the predominant choice for adversarial training. Our baseline, referred to as SimpleAT, yields three novel empirical insights. (i) By switching to square loss, the accuracy is comparable to that obtained by using both de-facto training protocol plus data augmentation. (ii) One cyclic learning rate is a good scheduler, which can effectively reduce the risk of robust overfitting. (iii) Employing rescaled square loss during model training can yield a favorable balance between adversarial and natural accuracy. In general, our experimental results show that SimpleAT effectively mitigates robust overfitting and consistently achieves the best performance at the end of training. For example, on CIFAR-10 with ResNet-18, SimpleAT achieves approximately 52% adversarial accuracy against the current strong AutoAttack. Furthermore, SimpleAT exhibits robust performance on various image corruptions, including those commonly found in CIFAR-10-C dataset. Finally, we assess the effectiveness of these insights through two techniques: bias-variance analysis and logit penalty methods. Our findings demonstrate that all of these simple techniques are capable of reducing the variance of model predictions, which is regarded as the primary contributor to robust overfitting. In addition, our analysis also uncovers connections with various advanced state-of-the-art methods.

While conformal predictors reap the benefits of rigorous statistical guarantees for their error frequency, the size of their corresponding prediction sets is critical to their practical utility. Unfortunately, there is currently a lack of finite-sample analysis and guarantees for their prediction set sizes. To address this shortfall, we theoretically quantify the expected size of the prediction set under the split conformal prediction framework. As this precise formulation cannot usually be calculated directly, we further derive point estimates and high probability intervals that can be easily computed, providing a practical method for characterizing the expected prediction set size across different possible realizations of the test and calibration data. Additionally, we corroborate the efficacy of our results with experiments on real-world datasets, for both regression and classification problems.

Path planning is critical for autonomous vehicles (AVs) to determine the optimal route while considering constraints and objectives. The potential field (PF) approach has become prevalent in path planning due to its simple structure and computational efficiency. However, current PF methods used in AVs focus solely on the path generation of the ego vehicle while assuming that the surrounding obstacle vehicles drive at a preset behavior without the PF-based path planner, which ignores the fact that the ego vehicle's PF could also impact the path generation of the obstacle vehicles. To tackle this problem, we propose a PF-based path planning approach where local paths are shared among ego and obstacle vehicles via vehicle-to-vehicle (V2V) communication. Then by integrating this shared local path into an objective function, a new optimization function called interactive speed optimization (ISO) is designed to allow driving safety and comfort for both ego and obstacle vehicles. The proposed method is evaluated using MATLAB/Simulink in the urgent merging scenarios by comparing it with conventional methods. The simulation results indicate that the proposed method can mitigate the impact of other AVs' PFs by slowing down in advance, effectively reducing the oscillations for both ego and obstacle AVs.

The growing interest in new applications involving co-located heterogeneous requirements, such as the Industrial Internet of Things (IIoT) paradigm, poses unprecedented challenges to the uplink wireless transmissions. Dedicated scheduling has been the fundamental approach used by mobile radio systems for uplink transmissions, where the network assigns contention-free resources to users based on buffer-related information. The usage of contention-based transmissions was discussed by the 3rd Generation Partnership Project (3GPP) as an alternative approach for reducing the uplink latency characterizing dedicated scheduling. Nevertheless, the contention-based approach was not considered for standardization in LTE due to limited performance gains. However, 5G NR introduced a different radio frame which could change the performance achievable with a contention-based framework, although this has not yet been evaluated. This paper aims to fill this gap. We present a contention-based design introduced for uplink transmissions in a 5G NR IIoT scenario. We provide an up-to-date analysis via near-product 3GPP-compliant network simulations of the achievable application-level performance with simultaneous Ultra-Reliable Low Latency Communications (URLLC) and Federated Learning (FL) traffic, where the contention-based scheme is applied to the FL traffic. The investigation also involves two separate mechanisms for handling retransmissions of lost or collided transmissions. Numerical results show that, under some conditions, the proposed contention-based design provides benefits over dedicated scheduling when considering FL upload/download times, and does not significantly degrade the performance of URLLC.

Recent successful generative models are trained by fitting a neural network to an a-priori defined tractable probability density path taking noise to training examples. In this paper we investigate the space of Gaussian probability paths, which includes diffusion paths as an instance, and look for an optimal member in some useful sense. In particular, minimizing the Kinetic Energy (KE) of a path is known to make particles' trajectories simple, hence easier to sample, and empirically improve performance in terms of likelihood of unseen data and sample generation quality. We investigate Kinetic Optimal (KO) Gaussian paths and offer the following observations: (i) We show the KE takes a simplified form on the space of Gaussian paths, where the data is incorporated only through a single, one dimensional scalar function, called the \emph{data separation function}. (ii) We characterize the KO solutions with a one dimensional ODE. (iii) We approximate data-dependent KO paths by approximating the data separation function and minimizing the KE. (iv) We prove that the data separation function converges to $1$ in the general case of arbitrary normalized dataset consisting of $n$ samples in $d$ dimension as $n/\sqrt{d}\rightarrow 0$. A consequence of this result is that the Conditional Optimal Transport (Cond-OT) path becomes \emph{kinetic optimal} as $n/\sqrt{d}\rightarrow 0$. We further support this theory with empirical experiments on ImageNet.

Artificial intelligence (AI) has emerged as a powerful tool for addressing complex and dynamic tasks in communication systems, where traditional rule-based algorithms often struggle. However, most AI applications to networking tasks are designed and trained for specific, limited conditions, hindering the algorithms from learning and adapting to generic situations, such as those met across radio access networks (RAN). This paper proposes design principles for sustainable and scalable AI integration in communication systems, focusing on creating AI algorithms that can generalize across network environments, intents, and control tasks. This approach enables a limited number of AI-driven RAN functions to tackle larger problems, improve system performance, and simplify lifecycle management. To achieve sustainability and automation, we introduce a scalable learning architecture that supports all deployed AI applications in the system. This architecture separates centralized learning functionalities from distributed actuation and inference functions, enabling efficient data collection and management, computational and storage resources optimization, and cost reduction. We illustrate these concepts by designing a generalized link adaptation algorithm, demonstrating the benefits of our proposed approach.

With the ever-increasing utilization of natural language processing (NLP), we started to witness over the past few years a significant transformation in our interaction with legal texts. This technology has advanced the analysis and enhanced the understanding of complex legal terminology and contexts. The development of recent large language models (LLMs), particularly ChatGPT, has also introduced a revolutionary contribution to the way that legal texts can be processed and comprehended. In this paper, we present our work on a cooperative-legal question-answering LLM-based chatbot, where we developed a set of legal questions about Palestinian cooperatives, associated with their regulations and compared the auto-generated answers by the chatbot to their correspondences that are designed by a legal expert. To evaluate the proposed chatbot, we have used 50 queries generated by the legal expert and compared the answers produced by the chart to their relevance judgments. Finding demonstrated that an overall accuracy rate of 82% has been achieved when answering the queries, while exhibiting an F1 score equivalent to 79%.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

北京阿比特科技有限公司