亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate 1D elliptic equations $-\nabla\cdot (a\nabla u)=f$ with rough diffusion coefficients $a$ that satisfy $0<a_{\min}\le a\le a_{\max}<\infty$ and $f\in L_2(\Omega)$. To achieve an accurate and robust numerical solution on a coarse mesh of size $H$, we introduce a derivative-orthogonal wavelet-based framework. This approach incorporates both regular and specialized basis functions constructed through a novel technique, defining a basis function space that enables effective approximation. We develop a derivative-orthogonal wavelet multiscale method tailored for this framework, proving that the condition number $\kappa$ of the stiffness matrix satisfies $\kappa\le a_{\max}/a_{\min}$, independent of $H$. For the error analysis, we establish that the energy and $L_2$-norm errors of our method converge at first-order and second-order rates, respectively, for any coarse mesh $H$. Specifically, the energy and $L_2$-norm errors are bounded by $2 a_{\min}^{-1/2} \|f\|_{L_2(\Omega)} H$ and $4 a_{\min}^{-1}\|f\|_{L_2(\Omega)} H^2$. Moreover, the numerical approximated solution also possesses the interpolation property at all grid points. We present a range of challenging test cases with continuous, discontinuous, high-frequency, and high-contrast coefficients $a$ to evaluate errors in $u, u'$ and $a u'$ in both $l_2$ and $l_\infty$ norms. We also provide a numerical example that both coefficient $a$ and source term $f$ contain discontinuous, high-frequency and high-contrast oscillations. Additionally, we compare our method with the standard second-order finite element method to assess error behaviors and condition numbers when the mesh is not fine enough to resolve coefficient oscillations. Numerical results confirm the bounded condition numbers and convergence rates, affirming the effectiveness of our approach.

相關內容

We study the problem of privately releasing an approximate minimum spanning tree (MST). Given a graph $G = (V, E, \vec{W})$ where $V$ is a set of $n$ vertices, $E$ is a set of $m$ undirected edges, and $ \vec{W} \in \mathbb{R}^{|E|} $ is an edge-weight vector, our goal is to publish an approximate MST under edge-weight differential privacy, as introduced by Sealfon in PODS 2016, where $V$ and $E$ are considered public and the weight vector is private. Our neighboring relation is $\ell_\infty$-distance on weights: for a sensitivity parameter $\Delta_\infty$, graphs $ G = (V, E, \vec{W}) $ and $ G' = (V, E, \vec{W}') $ are neighboring if $\|\vec{W}-\vec{W}'\|_\infty \leq \Delta_\infty$. Existing private MST algorithms face a trade-off, sacrificing either computational efficiency or accuracy. We show that it is possible to get the best of both worlds: With a suitable random perturbation of the input that does not suffice to make the weight vector private, the result of any non-private MST algorithm will be private and achieves a state-of-the-art error guarantee. Furthermore, by establishing a connection to Private Top-k Selection [Steinke and Ullman, FOCS '17], we give the first privacy-utility trade-off lower bound for MST under approximate differential privacy, demonstrating that the error magnitude, $\tilde{O}(n^{3/2})$, is optimal up to logarithmic factors. That is, our approach matches the time complexity of any non-private MST algorithm and at the same time achieves optimal error. We complement our theoretical treatment with experiments that confirm the practicality of our approach.

We consider maximizing an unknown monotonic, submodular set function $f: 2^{[n]} \rightarrow [0,1]$ with cardinality constraint under stochastic bandit feedback. At each time $t=1,\dots,T$ the learner chooses a set $S_t \subset [n]$ with $|S_t| \leq k$ and receives reward $f(S_t) + \eta_t$ where $\eta_t$ is mean-zero sub-Gaussian noise. The objective is to minimize the learner's regret with respect to an approximation of the maximum $f(S_*)$ with $|S_*| = k$, obtained through robust greedy maximization of $f$. To date, the best regret bound in the literature scales as $k n^{1/3} T^{2/3}$. And by trivially treating every set as a unique arm one deduces that $\sqrt{ {n \choose k} T }$ is also achievable using standard multi-armed bandit algorithms. In this work, we establish the first minimax lower bound for this setting that scales like $\tilde{\Omega}(\min_{L \le k}(L^{1/3}n^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. For a slightly restricted algorithm class, we prove a stronger regret lower bound of $\tilde{\Omega}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$. Moreover, we propose an algorithm Sub-UCB that achieves regret $\tilde{\mathcal{O}}(\min_{L \le k}(Ln^{1/3}T^{2/3} + \sqrt{{n \choose k - L}T}))$ capable of matching the lower bound on regret for the restricted class up to logarithmic factors.

In this paper, we introduce \textbf{SLAM3R}, a novel and effective monocular RGB SLAM system for real-time and high-quality dense 3D reconstruction. SLAM3R provides an end-to-end solution by seamlessly integrating local 3D reconstruction and global coordinate registration through feed-forward neural networks. Given an input video, the system first converts it into overlapping clips using a sliding window mechanism. Unlike traditional pose optimization-based methods, SLAM3R directly regresses 3D pointmaps from RGB images in each window and progressively aligns and deforms these local pointmaps to create a globally consistent scene reconstruction - all without explicitly solving any camera parameters. Experiments across datasets consistently show that SLAM3R achieves state-of-the-art reconstruction accuracy and completeness while maintaining real-time performance at 20+ FPS. Code and weights at: \url{//github.com/PKU-VCL-3DV/SLAM3R}.

We consider temporal numeric planning problems $\Pi$ expressed in PDDL2.1 level 3, and show how to produce SMT formulas $(i)$ whose models correspond to valid plans of $\Pi$, and $(ii)$ that extend the recently proposed planning with patterns approach from the numeric to the temporal case. We prove the correctness and completeness of the approach and show that it performs very well on 10 domains with required concurrency.

Martin-L\"{o}f type theory $\mathbf{MLTT}$ was extended by Setzer with the so-called Mahlo universe types. The extension of $\mathbf{MLTT}$ with one Mahlo universe is called $\mathbf{MLM}$ and was introduced to develop a variant of $\mathbf{MLTT}$ equipped with an analogue of a large cardinal. Another instance of constructive systems extended with an analogue of a large set was formulated in the context of Aczel's constructive set theory: $\mathbf{CZF}$. Rathjen, Griffor and Palmgren extended $\mathbf{CZF}$ with inaccessible sets of all transfinite orders. While Rathjen proved that this extended system of $\mathbf{CZF}$ is interpretable in an extension of $\mathbf{MLM}$ with one usual universe type above the Mahlo universe, it is unknown whether it can be interpreted by the Mahlo universe without a universe type above it. We extend $\mathbf{MLM}$ not by a universe type but by the accessibility predicate, and show that $\mathbf{CZF}$ with inaccessible sets can be interpreted in $\mathbf{MLM}$ with the accessibility predicate. Our interpretation of this extension of $\mathbf{CZF}$ is the same as that of Rathjen, Griffor and Palmgren formulated by $\mathbf{MLTT}$ with second-order universe operators, except that we construct the inaccessible sets by using the Mahlo universe and the accessibility predicate. We formalised the main part of our interpretation in the proof assistant Agda.

We present MathDSL, a Domain-Specific Language (DSL) for mathematical equation solving, which, when deployed in program synthesis models, outperforms state-of-the-art reinforcement-learning-based methods. We also introduce a quantitative metric for measuring the conciseness of a mathematical solution and demonstrate the improvement in the quality of generated solutions compared to other methods. Our system demonstrates that a program synthesis system (DreamCoder) using MathDSL can generate programs that solve linear equations with greater accuracy and conciseness than using reinforcement learning systems. Additionally, we demonstrate that if we use the action spaces of previous reinforcement learning systems as DSLs, MathDSL outperforms the action-space-DSLs. We use DreamCoder to store equation-solving strategies as learned abstractions in its program library and demonstrate that by using MathDSL, these can be converted into human-interpretable solution strategies that could have applications in mathematical education.

We introduce a novel, data-driven approach for reconstructing temporally coherent 3D motion from unstructured and potentially partial observations of non-rigidly deforming shapes. Our goal is to achieve high-fidelity motion reconstructions for shapes that undergo near-isometric deformations, such as humans wearing loose clothing. The key novelty of our work lies in its ability to combine implicit shape representations with explicit mesh-based deformation models, enabling detailed and temporally coherent motion reconstructions without relying on parametric shape models or decoupling shape and motion. Each frame is represented as a neural field decoded from a feature space where observations over time are fused, hence preserving geometric details present in the input data. Temporal coherence is enforced with a near-isometric deformation constraint between adjacent frames that applies to the underlying surface in the neural field. Our method outperforms state-of-the-art approaches, as demonstrated by its application to human and animal motion sequences reconstructed from monocular depth videos.

Not many tests exist for testing the equality for two or more multivariate distributions with compositional data, perhaps due to their constrained sample space. At the moment, there is only one test suggested that relies upon random projections. We propose a novel test termed {\alpha}-Energy Based Test ({\alpha}-EBT) to compare the multivariate distributions of two (or more) compositional data sets. Similar to the aforementioned test, the new test makes no parametric assumptions about the data and, based on simulation studies it exhibits higher power levels.

The ideal estimand for comparing a new treatment $Rx$ with a control $C$ is the $\textit{counterfactual}$ efficacy $Rx:C$, the expected differential outcome between $Rx$ and $C$ if each patient were given $\textit{both}$. While counterfactual $\textit{point estimation}$ from $\textit{factual}$ Randomized Controlled Trials (RCTs) has been available, this article shows $\textit{counterfactual}$ uncertainty quantification (CUQ), quantifying uncertainty for factual point estimates but in a counterfactual setting, is surprisingly achievable. We achieve CUQ whose variability is typically smaller than factual UQ, by creating a new statistical modeling principle called ETZ which is applicable to RCTs with $\textit{Before-and-After}$ treatment Repeated Measures, common in many therapeutic areas. We urge caution when estimate of the unobservable true condition of a patient before treatment has measurement error, because that violation of standard regression assumption can cause attenuation in estimating treatment effects. Fortunately, we prove that, for traditional medicine in general, and for targeted therapy with efficacy defined as averaged over the population, counterfactual point estimation is unbiased. However, for targeted therapy, both Real Human and Digital Twins approaches should respect this limitation, lest predicted treatment effect in $\textit{subgroups}$ will have bias.

We construct a polynomial-time classical algorithm that samples from the output distribution of low-depth noisy Clifford circuits with any product-state inputs and final single-qubit measurements in any basis. This class of circuits includes Clifford-magic circuits and Conjugated-Clifford circuits, which are important candidates for demonstrating quantum advantage using non-universal gates. Additionally, our results generalize a simulation algorithm for IQP circuits [Rajakumar et. al, SODA'25] to the case of IQP circuits augmented with CNOT gates, which is another class of non-universal circuits that are relevant to current experiments. Importantly, our results do not require randomness assumptions over the circuit families considered (such as anticoncentration properties) and instead hold for every circuit in each class. This allows us to place tight limitations on the robustness of these circuits to noise. In particular, we show that there is no quantum advantage at large depths with realistically noisy Clifford circuits, even with perfect magic state inputs, or IQP circuits with CNOT gates, even with arbitrary diagonal non-Clifford gates. The key insight behind the algorithm is that interspersed noise causes a decay of long-range entanglement, and at depths beyond a critical threshold, the noise builds up to an extent that most correlations can be classically simulated. To prove our results, we merge techniques from percolation theory with tools from Pauli path analysis.

北京阿比特科技有限公司