亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The effectiveness of automatic evaluation of generative models is typically measured by comparing it to human evaluation using correlation metrics. However, metrics like Krippendorff's $\alpha$ and Randolph's $\kappa$, originally designed to measure the reliability of human labeling, make assumptions about human behavior and the labeling process. In this paper, we show how *relying on a single aggregate correlation score* can obscure fundamental differences between human behavior and automatic evaluation methods, including LLM-as-a-Judge. Specifically, we demonstrate that when the proportion of samples with variation or uncertainty in human labels (gathered during human evaluation) is relatively high, machine labels (generated by automatic evaluation methods) may superficially appear to have similar or better correlation with the human majority label compared to human-to-human (HH) correlation. This can create the misleading impression that automatic evaluation is accurate enough to approximate the human majority label. However, as the proportion of samples with consistent human labels increases, the correlation between machine labels and human majority labels declines, falling below HH correlation. Based on these findings, we first propose stratifying results by human label uncertainty to provide a more robust analysis of automatic evaluation performance. Second, recognizing that uncertainty and variation are inherent in perception-based human evaluations, such as those involving attitudes or preferences, we introduce a new metric - *binned Jensen-Shannon Divergence for perception* for such scenarios to better measure the effectiveness of automatic evaluations. Third, we present visualization techniques -- *perception charts*, to compare the strengths and limitations of automatic evaluation and to contextualize correlation measures appropriately

相關內容

False data injection attacks (FDIAs) on smart inverters are a growing concern linked to increased renewable energy production. While data-based FDIA detection methods are also actively developed, we show that they remain vulnerable to impactful and stealthy adversarial examples that can be crafted using Reinforcement Learning (RL). We propose to include such adversarial examples in data-based detection training procedure via a continual adversarial RL (CARL) approach. This way, one can pinpoint the deficiencies of data-based detection, thereby offering explainability during their incremental improvement. We show that a continual learning implementation is subject to catastrophic forgetting, and additionally show that forgetting can be addressed by employing a joint training strategy on all generated FDIA scenarios.

Integrating autonomous contact-based robotic characterization into self-driving laboratories can enhance measurement quality, reliability, and throughput. While deep learning models support robust autonomy, current methods lack pixel-precision positioning and require extensive labeled data. To overcome these challenges, we propose a self-supervised convolutional neural network with a spatially differentiable loss function, incorporating shape priors to refine predictions of optimal robot contact poses for semiconductor characterization. This network improves valid pose generation by 20.0%, relative to existing models. We demonstrate our network's performance by driving a 4-degree-of-freedom robot to characterize photoconductivity at 3,025 predicted poses across a gradient of perovskite compositions, achieving throughputs over 125 measurements per hour. Spatially mapping photoconductivity onto each drop-casted film reveals regions of inhomogeneity. With this self-supervised deep learning-driven robotic system, we enable high-precision and reliable automation of contact-based characterization techniques at high throughputs, thereby allowing the measurement of previously inaccessible yet important semiconductor properties for self-driving laboratories.

We develop fibrational perspectives on context-free grammars and on nondeterministic finite-state automata over categories and operads. A generalized CFG is a functor from a free colored operad (aka multicategory) generated by a pointed finite species into an arbitrary base operad: this encompasses classical CFGs by taking the base to be a certain operad constructed from a free monoid, as an instance of a more general construction of an \emph{operad of spliced arrows} $\mathcal{W}\,\mathcal{C}$ for any category $\mathcal{C}$. A generalized NFA is a functor from an arbitrary bipointed category or pointed operad satisfying the unique lifting of factorizations and finite fiber properties: this encompasses classical word automata and tree automata without $\epsilon$-transitions, but also automata over non-free categories and operads. We show that generalized context-free and regular languages satisfy suitable generalizations of many of the usual closure properties, and in particular we give a simple conceptual proof that context-free languages are closed under intersection with regular languages. Finally, we observe that the splicing functor $\mathcal{W} : Cat \to Oper$ admits a left adjoint $\mathcal{C}: Oper \to Cat$, which we call the \emph{contour category} construction since the arrows of $\mathcal{C}\,\mathcal{O}$ have a geometric interpretation as oriented contours of operations of $\mathcal{O}$. A direct consequence of the contour / splicing adjunction is that every pointed finite species induces a universal CFG generating a language of \emph{tree contour words.} This leads us to a generalization of the Chomsky-Sch\"utzenberger Representation Theorem, establishing that a subset of a homset $L \subseteq \mathcal{C}(A,B)$ is a CFL of arrows if and only if it is a functorial image of the intersection of a $\mathcal{C}$-chromatic tree contour language with a regular language.

Splitting methods are widely used for solving initial value problems (IVPs) due to their ability to simplify complicated evolutions into more manageable subproblems which can be solved efficiently and accurately. Traditionally, these methods are derived using analytic and algebraic techniques from numerical analysis, including truncated Taylor series and their Lie algebraic analogue, the Baker--Campbell--Hausdorff formula. These tools enable the development of high-order numerical methods that provide exceptional accuracy for small timesteps. Moreover, these methods often (nearly) conserve important physical invariants, such as mass, unitarity, and energy. However, in many practical applications the computational resources are limited. Thus, it is crucial to identify methods that achieve the best accuracy within a fixed computational budget, which might require taking relatively large timesteps. In this regime, high-order methods derived with traditional methods often exhibit large errors since they are only designed to be asymptotically optimal. Machine Learning techniques offer a potential solution since they can be trained to efficiently solve a given IVP with less computational resources. However, they are often purely data-driven, come with limited convergence guarantees in the small-timestep regime and do not necessarily conserve physical invariants. In this work, we propose a framework for finding machine learned splitting methods that are computationally efficient for large timesteps and have provable convergence and conservation guarantees in the small-timestep limit. We demonstrate numerically that the learned methods, which by construction converge quadratically in the timestep size, can be significantly more efficient than established methods for the Schr\"{o}dinger equation if the computational budget is limited.

In this study, we present SeMaScore, generated using a segment-wise mapping and scoring algorithm that serves as an evaluation metric for automatic speech recognition tasks. SeMaScore leverages both the error rate and a more robust similarity score. We show that our algorithm's score generation improves upon the state-of-the-art BERTScore. Our experimental results show that SeMaScore corresponds well with expert human assessments, signal-to-noise ratio levels, and other natural language metrics. We outperform BERTScore by 41x in metric computation speed. Overall, we demonstrate that SeMaScore serves as a more dependable evaluation metric, particularly in real-world situations involving atypical speech patterns.

Domain generalisation in computational histopathology is challenging because the images are substantially affected by differences among hospitals due to factors like fixation and staining of tissue and imaging equipment. We hypothesise that focusing on nuclei can improve the out-of-domain (OOD) generalisation in cancer detection. We propose a simple approach to improve OOD generalisation for cancer detection by focusing on nuclear morphology and organisation, as these are domain-invariant features critical in cancer detection. Our approach integrates original images with nuclear segmentation masks during training, encouraging the model to prioritise nuclei and their spatial arrangement. Going beyond mere data augmentation, we introduce a regularisation technique that aligns the representations of masks and original images. We show, using multiple datasets, that our method improves OOD generalisation and also leads to increased robustness to image corruptions and adversarial attacks. The source code is available at //github.com/undercutspiky/SFL/

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司