Deep neural networks (DNNs) are of critical use in different domains. To accelerate DNN computation, tensor compilers are proposed to generate efficient code on different domain-specific accelerators. Existing tensor compilers mainly focus on optimizing computation efficiency. However, memory access is becoming a key performance bottleneck because the computational performance of accelerators is increasing much faster than memory performance. The lack of direct description of memory access and data dependence in current tensor compilers' intermediate representation (IR) brings significant challenges to generate memory-efficient code. In this paper, we propose IntelliGen, a tensor compiler that can generate high-performance code for memory-intensive operators by considering both computation and data movement optimizations. IntelliGen represent a DNN program using GIR, which includes primitives indicating its computation, data movement, and parallel strategies. This information will be further composed as an instruction-level dataflow graph to perform holistic optimizations by searching different memory access patterns and computation operations, and generating memory-efficient code on different hardware. We evaluate IntelliGen on NVIDIA GPU, AMD GPU, and Cambricon MLU, showing speedup up to 1.97x, 2.93x, and 16.91x(1.28x, 1.23x, and 2.31x on average), respectively, compared to current most performant frameworks.
Expanding the benefits of quantum computing to new domains remains a challenging task. Quantum applications are concentrated in only a few domains, and driven by these few, the quantum stack is limited in supporting the development or execution demands of new applications. In this work, we address this problem by identifying both a new application domain, and new directions to shape the quantum stack. We introduce computational cognitive models as a new class of quantum applications. Such models have been crucial in understanding and replicating human intelligence, and our work connects them with quantum computing for the first time. Next, we analyze these applications to make the case for redesigning the quantum stack for programmability and better performance. Among the research opportunities we uncover, we study two simple ideas of quantum cloud scheduling using data from gate-based and annealing-based quantum computers. On the respective systems, these ideas can enable parallel execution, and improve throughput. Our work is a contribution towards realizing versatile quantum systems that can broaden the impact of quantum computing on science and society.
Federated Learning (FL) requires frequent exchange of model parameters, which leads to long communication delay, especially when the network environments of clients vary greatly. Moreover, the parameter server needs to wait for the slowest client (i.e., straggler, which may have the largest model size, lowest computing capability or worst network condition) to upload parameters, which may significantly degrade the communication efficiency. Commonly-used client selection methods such as partial client selection would lead to the waste of computing resources and weaken the generalization of the global model. To tackle this problem, along a different line, in this paper, we advocate the approach of model parameter dropout instead of client selection, and accordingly propose a novel framework of Federated learning scheme with Differential parameter Dropout (FedDD). FedDD consists of two key modules: dropout rate allocation and uploaded parameter selection, which will optimize the model parameter uploading ratios tailored to different clients' heterogeneous conditions and also select the proper set of important model parameters for uploading subject to clients' dropout rate constraints. Specifically, the dropout rate allocation is formulated as a convex optimization problem, taking system heterogeneity, data heterogeneity, and model heterogeneity among clients into consideration. The uploaded parameter selection strategy prioritizes on eliciting important parameters for uploading to speedup convergence. Furthermore, we theoretically analyze the convergence of the proposed FedDD scheme. Extensive performance evaluations demonstrate that the proposed FedDD scheme can achieve outstanding performances in both communication efficiency and model convergence, and also possesses a strong generalization capability to data of rare classes.
Current backdoor attacks against federated learning (FL) strongly rely on universal triggers or semantic patterns, which can be easily detected and filtered by certain defense mechanisms such as norm clipping, comparing parameter divergences among local updates. In this work, we propose a new stealthy and robust backdoor attack with flexible triggers against FL defenses. To achieve this, we build a generative trigger function that can learn to manipulate the benign samples with an imperceptible flexible trigger pattern and simultaneously make the trigger pattern include the most significant hidden features of the attacker-chosen label. Moreover, our trigger generator can keep learning and adapt across different rounds, allowing it to adjust to changes in the global model. By filling the distinguishable difference (the mapping between the trigger pattern and target label), we make our attack naturally stealthy. Extensive experiments on real-world datasets verify the effectiveness and stealthiness of our attack compared to prior attacks on decentralized learning framework with eight well-studied defenses.
Enabling robots to understand language instructions and react accordingly to visual perception has been a long-standing goal in the robotics research community. Achieving this goal requires cutting-edge advances in natural language processing, computer vision, and robotics engineering. Thus, this paper mainly investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system to enhance the effectiveness of the human-robot interaction. We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration. The system utilizes the LLM of ChatGPT to summarize the preference object of the users as a target instruction via the multi-round interactive dialogue. The target instruction is then forwarded to a visual grounding system for object pose and size estimation, following which the robot grasps the object accordingly. We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task. The further experimental results on various real-world scenarios demonstrated the feasibility and efficacy of our proposed framework. See the project website at: //star-uu-wang.github.io/WALL-E/
Face-to-face communication is a common scenario including roles of speakers and listeners. Most existing research methods focus on producing speaker videos, while the generation of listener heads remains largely overlooked. Responsive listening head generation is an important task that aims to model face-to-face communication scenarios by generating a listener head video given a speaker video and a listener head image. An ideal generated responsive listening video should respond to the speaker with attitude or viewpoint expressing while maintaining diversity in interaction patterns and accuracy in listener identity information. To achieve this goal, we propose the \textbf{M}ulti-\textbf{F}aceted \textbf{R}esponsive Listening Head Generation Network (MFR-Net). Specifically, MFR-Net employs the probabilistic denoising diffusion model to predict diverse head pose and expression features. In order to perform multi-faceted response to the speaker video, while maintaining accurate listener identity preservation, we design the Feature Aggregation Module to boost listener identity features and fuse them with other speaker-related features. Finally, a renderer finetuned with identity consistency loss produces the final listening head videos. Our extensive experiments demonstrate that MFR-Net not only achieves multi-faceted responses in diversity and speaker identity information but also in attitude and viewpoint expression.
Improving data systems' performance for join operations has long been an issue of great importance. More recently, a lot of focus has been devoted to multi-way join performance and especially on reducing the negative impact of producing intermediate tuples, which in the end do not make it in the final result. We contribute a new multi-way join algorithm, coined SieveJoin, which extends the well-known Bloomjoin algorithm to multi-way joins and achieves state-of-the-art performance in terms of join query execution efficiency. SieveJoin's salient novel feature is that it allows the propagation of Bloom filters in the join path, enabling the system to `stop early' and eliminate useless intermediate join results. The key design objective of SieveJoin is to efficiently `learn' the join results, based on Bloom filters, with negligible memory overheads. We discuss the bottlenecks in delaying multi-way joins, and how Bloom filters are used to remove the generation of unnecessary intermediate join results. We provide a detailed experimental evaluation using various datasets, against a state-of-the-art column-store database and a multi-way worst-case optimal join algorithm, showcasing SieveJoin's gains in terms of response time.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.