The fractional differential equation $L^\beta u = f$ posed on a compact metric graph is considered, where $\beta>\frac14$ and $L = \kappa - \frac{\mathrm{d}}{\mathrm{d} x}(H\frac{\mathrm{d}}{\mathrm{d} x})$ is a second-order elliptic operator equipped with certain vertex conditions and sufficiently smooth and positive coefficients $\kappa,H$. We demonstrate the existence of a unique solution for a general class of vertex conditions and derive the regularity of the solution in the specific case of Kirchhoff vertex conditions. These results are extended to the stochastic setting when $f$ is replaced by Gaussian white noise. For the deterministic and stochastic settings under generalized Kirchhoff vertex conditions, we propose a numerical solution based on a finite element approximation combined with a rational approximation of the fractional power $L^{-\beta}$. For the resulting approximation, the strong error is analyzed in the deterministic case, and the strong mean squared error as well as the $L_2(\Gamma\times \Gamma)$-error of the covariance function of the solution are analyzed in the stochastic setting. Explicit rates of convergences are derived for all cases. Numerical experiments for the example ${L = \kappa^2 - \Delta, \kappa>0}$ are performed to illustrate the theoretical results.
Endoscopic video recordings are widely used in minimally invasive robot-assisted surgery, but when the endoscope is outside the patient's body, it can capture irrelevant segments that may contain sensitive information. To address this, we propose a framework that accurately detects out-of-body frames in surgical videos by leveraging self-supervision with minimal data labels. We use a massive amount of unlabeled endoscopic images to learn meaningful representations in a self-supervised manner. Our approach, which involves pre-training on an auxiliary task and fine-tuning with limited supervision, outperforms previous methods for detecting out-of-body frames in surgical videos captured from da Vinci X and Xi surgical systems. The average F1 scores range from 96.00 to 98.02. Remarkably, using only 5% of the training labels, our approach still maintains an average F1 score performance above 97, outperforming fully-supervised methods with 95% fewer labels. These results demonstrate the potential of our framework to facilitate the safe handling of surgical video recordings and enhance data privacy protection in minimally invasive surgery.
As a second-order method, the Natural Gradient Descent (NGD) has the ability to accelerate training of neural networks. However, due to the prohibitive computational and memory costs of computing and inverting the Fisher Information Matrix (FIM), efficient approximations are necessary to make NGD scalable to Deep Neural Networks (DNNs). Many such approximations have been attempted. The most sophisticated of these is KFAC, which approximates the FIM as a block-diagonal matrix, where each block corresponds to a layer of the neural network. By doing so, KFAC ignores the interactions between different layers. In this work, we investigate the interest of restoring some low-frequency interactions between the layers by means of two-level methods. Inspired from domain decomposition, several two-level corrections to KFAC using different coarse spaces are proposed and assessed. The obtained results show that incorporating the layer interactions in this fashion does not really improve the performance of KFAC. This suggests that it is safe to discard the off-diagonal blocks of the FIM, since the block-diagonal approach is sufficiently robust, accurate and economical in computation time.
In this contribution, a wave equation with a time-dependent variable-order fractional damping term and a nonlinear source is considered. Avoiding the circumstances of expressing the nonlinear variable-order fractional wave equations via closed-form expressions in terms of special functions, we investigate the existence and uniqueness of this problem with Rothe's method. First, the weak formulation for the considered wave problem is proposed. Then, the uniqueness of a solution is established by employing Gr\"onwall's lemma. The Rothe scheme's basic idea is to use Rothe functions to extend the solutions on single-time steps over the entire time frame. Inspired by that, we next introduce a uniform mesh time-discrete scheme based on a discrete convolution approximation in the backward sense. By applying some reasonable assumptions to the given data, we can predict a priori estimates for the time-discrete solution. Employing these estimates side by side with Rothe functions leads to proof of the solution's existence over the whole time interval. Finally, the full discretisation of the problem is introduced by invoking Galerkin spectral techniques in the spatial direction, and numerical examples are given.
Sound correspondence patterns form the basis of cognate detection and phonological reconstruction in historical language comparison. Methods for the automatic inference of correspondence patterns from phonetically aligned cognate sets have been proposed, but their application to multilingual wordlists requires extremely well annotated datasets. Since annotation is tedious and time consuming, it would be desirable to find ways to improve aligned cognate data automatically. Taking inspiration from trimming techniques in evolutionary biology, which improve alignments by excluding problematic sites, we propose a workflow that trims phonetic alignments in comparative linguistics prior to the inference of correspondence patterns. Testing these techniques on a large standardized collection of ten datasets with expert annotations from different language families, we find that the best trimming technique substantially improves the overall consistency of the alignments. The results show a clear increase in the proportion of frequent correspondence patterns and words exhibiting regular cognate relations.
In tug-of-war, two players compete by moving a counter along edges of a graph, each winning the right to move at a given turn according to the flip of a possibly biased coin. The game ends when the counter reaches the boundary, a fixed subset of the vertices, at which point one player pays the other an amount determined by the boundary vertex. Economists and mathematicians have independently studied tug-of-war for many years, focussing respectively on resource-allocation forms of the game, in which players iteratively spend precious budgets in an effort to influence the bias of the coins that determine the turn victors; and on PDE arising in fine mesh limits of the constant-bias game in a Euclidean setting. In this article, we offer a mathematical treatment of a class of tug-of-war games with allocated budgets: each player is initially given a fixed budget which she draws on throughout the game to offer a stake at the start of each turn, and her probability of winning the turn is the ratio of her stake and the sum of the two stakes. We consider the game played on a tree, with boundary being the set of leaves, and the payment function being the indicator of a single distinguished leaf. We find the game value and the essentially unique Nash equilibrium of a leisurely version of the game, in which the move at any given turn is cancelled with constant probability after stakes have been placed. We show that the ratio of the players' remaining budgets is maintained at its initial value $\lambda$; game value is a biased infinity harmonic function; and the proportion of remaining budget that players stake at a given turn is given in terms of the spatial gradient and the $\lambda$-derivative of game value. We also indicate examples in which the solution takes a different form in the non-leisurely game.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.
In recent years, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO have been published as noteworthy large, cross-domain, and freely available knowledge graphs. Although extensively in use, these knowledge graphs are hard to compare against each other in a given setting. Thus, it is a challenge for researchers and developers to pick the best knowledge graph for their individual needs. In our recent survey, we devised and applied data quality criteria to the above-mentioned knowledge graphs. Furthermore, we proposed a framework for finding the most suitable knowledge graph for a given setting. With this paper we intend to ease the access to our in-depth survey by presenting simplified rules that map individual data quality requirements to specific knowledge graphs. However, this paper does not intend to replace our previously introduced decision-support framework. For an informed decision on which KG is best for you we still refer to our in-depth survey.