亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This report presents the takeaways of the inaugural Workshop on Generative AI and Law (GenLaw), held in July 2023. A cross-disciplinary group of practitioners and scholars from computer science and law convened to discuss the technical, doctrinal, and policy challenges presented by law for Generative AI, and by Generative AI for law, with an emphasis on U.S. law in particular. We begin the report with a high-level statement about why Generative AI is both immensely significant and immensely challenging for law. To meet these challenges, we conclude that there is an essential need for 1) a shared knowledge base that provides a common conceptual language for experts across disciplines; 2) clarification of the distinctive technical capabilities of generative-AI systems, as compared and contrasted to other computer and AI systems; 3) a logical taxonomy of the legal issues these systems raise; and, 4) a concrete research agenda to promote collaboration and knowledge-sharing on emerging issues at the intersection of Generative AI and law. In this report, we synthesize the key takeaways from the GenLaw workshop that begin to address these needs. All of the listed authors contributed to the workshop upon which this report is based, but they and their organizations do not necessarily endorse all of the specific claims in this report.

相關內容

人(ren)工(gong)(gong)智能(neng)(neng)雜(za)志AI(Artificial Intelligence)是目前(qian)公(gong)認(ren)的(de)(de)(de)(de)(de)發(fa)表該(gai)領域(yu)最(zui)新研究成(cheng)果(guo)的(de)(de)(de)(de)(de)主(zhu)要國際論(lun)(lun)壇。該(gai)期刊歡迎有關AI廣泛(fan)方(fang)面的(de)(de)(de)(de)(de)論(lun)(lun)文,這些(xie)論(lun)(lun)文構成(cheng)了整個(ge)領域(yu)的(de)(de)(de)(de)(de)進步,也(ye)歡迎介紹人(ren)工(gong)(gong)智能(neng)(neng)應用(yong)的(de)(de)(de)(de)(de)論(lun)(lun)文,但重點應該(gai)放在新的(de)(de)(de)(de)(de)和新穎(ying)的(de)(de)(de)(de)(de)人(ren)工(gong)(gong)智能(neng)(neng)方(fang)法如何(he)提高應用(yong)領域(yu)的(de)(de)(de)(de)(de)性(xing)(xing)能(neng)(neng),而不是介紹傳統(tong)人(ren)工(gong)(gong)智能(neng)(neng)方(fang)法的(de)(de)(de)(de)(de)另一個(ge)應用(yong)。關于應用(yong)的(de)(de)(de)(de)(de)論(lun)(lun)文應該(gai)描述一個(ge)原則(ze)性(xing)(xing)的(de)(de)(de)(de)(de)解決方(fang)案(an),強調(diao)其(qi)新穎(ying)性(xing)(xing),并對(dui)正在開發(fa)的(de)(de)(de)(de)(de)人(ren)工(gong)(gong)智能(neng)(neng)技術進行(xing)深入的(de)(de)(de)(de)(de)評估。 官網地址:

Very recently, the first mathematical runtime analyses of the multi-objective evolutionary optimizer NSGA-II have been conducted. We continue this line of research with a first runtime analysis of this algorithm on a benchmark problem consisting of two multimodal objectives. We prove that if the population size $N$ is at least four times the size of the Pareto front, then the NSGA-II with four different ways to select parents and bit-wise mutation optimizes the OneJumpZeroJump benchmark with jump size~$2 \le k \le n/4$ in time $O(N n^k)$. When using fast mutation, a recently proposed heavy-tailed mutation operator, this guarantee improves by a factor of $k^{\Omega(k)}$. Overall, this work shows that the NSGA-II copes with the local optima of the OneJumpZeroJump problem at least as well as the global SEMO algorithm.

The burgeoning field of Artificial Intelligence Generated Content (AIGC) is witnessing rapid advancements, particularly in video generation. This paper introduces AIGCBench, a pioneering comprehensive and scalable benchmark designed to evaluate a variety of video generation tasks, with a primary focus on Image-to-Video (I2V) generation. AIGCBench tackles the limitations of existing benchmarks, which suffer from a lack of diverse datasets, by including a varied and open-domain image-text dataset that evaluates different state-of-the-art algorithms under equivalent conditions. We employ a novel text combiner and GPT-4 to create rich text prompts, which are then used to generate images via advanced Text-to-Image models. To establish a unified evaluation framework for video generation tasks, our benchmark includes 11 metrics spanning four dimensions to assess algorithm performance. These dimensions are control-video alignment, motion effects, temporal consistency, and video quality. These metrics are both reference video-dependent and video-free, ensuring a comprehensive evaluation strategy. The evaluation standard proposed correlates well with human judgment, providing insights into the strengths and weaknesses of current I2V algorithms. The findings from our extensive experiments aim to stimulate further research and development in the I2V field. AIGCBench represents a significant step toward creating standardized benchmarks for the broader AIGC landscape, proposing an adaptable and equitable framework for future assessments of video generation tasks.

Natural Language Processing (NLP) is now a cornerstone of requirements automation. One compelling factor behind the growing adoption of NLP in Requirements Engineering (RE) is the prevalent use of natural language (NL) for specifying requirements in industry. NLP techniques are commonly used for automatically classifying requirements, extracting important information, e.g., domain models and glossary terms, and performing quality assurance tasks, such as ambiguity handling and completeness checking. With so many different NLP solution strategies available and the possibility of applying machine learning alongside, it can be challenging to choose the right strategy for a specific RE task and to evaluate the resulting solution in an empirically rigorous manner. This book chapter presents guidelines for the selection of NLP techniques as well as for their evaluation in the context of RE. In particular, we discuss how to choose among different strategies such as traditional NLP, feature-based machine learning, and language-model-based methods. Our ultimate hope for this chapter is to serve as a stepping stone, assisting newcomers to NLP4RE in quickly initiating themselves into the NLP technologies most pertinent to the RE field.

Large Language Models (LLMs), particularly those similar to ChatGPT, have significantly influenced the field of Natural Language Processing (NLP). While these models excel in general language tasks, their performance in domain-specific downstream tasks such as biomedical and clinical Named Entity Recognition (NER), Relation Extraction (RE), and Medical Natural Language Inference (NLI) is still evolving. In this context, our study investigates the potential of instruction tuning for biomedical language processing, applying this technique to two general LLMs of substantial scale. We present a comprehensive, instruction-based model trained on a dataset that consists of approximately $200,000$ instruction-focused samples. This dataset represents a carefully curated compilation of existing data, meticulously adapted and reformatted to align with the specific requirements of our instruction-based tasks. This initiative represents an important step in utilising such models to achieve results on par with specialised encoder-only models like BioBERT and BioClinicalBERT for various classical biomedical NLP tasks. Our work includes an analysis of the dataset's composition and its impact on model performance, providing insights into the intricacies of instruction tuning. By sharing our codes, models, and the distinctively assembled instruction-based dataset, we seek to encourage ongoing research and development in this area.

This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the Intensive Care Unit (ICU) length of stay (LOS). Highlighting the critical role of the ICU in managing critically ill patients, the study addresses the growing strain on ICU capacity. It emphasizes the significance of LOS prediction for resource allocation. The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction. While the XGBoost model performs well overall, disparities across race and insurance attributes reflect the need for tailored assessments and continuous monitoring. The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.

The characteristics and interpretability of data become more abstract and complex as the dimensionality increases. Common patterns and relationships that hold in in low-dimensional space may fail to hold in higher-dimensional space. This phenomenon leads to a decreasing performance for the regression, classification or clustering models or algorithms, which is known as curse of dimensionality. Curse of dimensionality can be attributed to many causes. In this paper, we first summarize five challenges associated with manipulating high-dimensional data, and explains the potential causes for the failure of regression, classification or clustering tasks. Subsequently, we delve into two major causes of the curse of dimensionality, distance concentration and manifold effect, by performing theoretical and empirical analyses. The results demonstrate that nearest neighbor search (NNS) using three typical distance measurements, Minkowski distance, Chebyshev distance, and cosine distance, becomes meaningless as the dimensionality increases. Meanwhile, the data incorporates more redundant features, and the variance contribution of principal component analysis (PCA) is skewed towards a few dimensions. By interpreting the causes of the curse of dimensionality, we can better understand the limitations of current models and algorithms, and drive to improve the performance of data analysis and machine learning tasks in high-dimensional space.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司