亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Discretization of continuous stochastic processes is needed to numerically simulate them or to infer models from experimental time series. However, depending on the nature of the process, the same discretization scheme, if not accurate enough, may perform very differently for the two tasks. Exact discretizations, which work equally well at any scale, are characterized by the property of invariance under coarse-graining. Motivated by this observation, we build an explicit Renormalization Group approach for Gaussian time series generated by auto-regressive models. We show that the RG fixed points correspond to discretizations of linear SDEs, and only come in the form of first order Markov processes or non-Markovian ones. This fact provides an alternative explanation of why standard delay-vector embedding procedures fail in reconstructing partially observed noise-driven systems. We also suggest a possible effective Markovian discretization for the inference of partially observed underdamped equilibrium processes based on the exploitation of the Einstein relation.

相關內容

We propose a framework to analyze how multivariate representations disentangle ground-truth generative factors. A quantitative analysis of disentanglement has been based on metrics designed to compare how one variable explains each generative factor. Current metrics, however, may fail to detect entanglement that involves more than two variables, e.g., representations that duplicate and rotate generative factors in high dimensional spaces. In this work, we establish a framework to analyze information sharing in a multivariate representation with Partial Information Decomposition and propose a new disentanglement metric. This framework enables us to understand disentanglement in terms of uniqueness, redundancy, and synergy. We develop an experimental protocol to assess how increasingly entangled representations are evaluated with each metric and confirm that the proposed metric correctly responds to entanglement. Through experiments on variational autoencoders, we find that models with similar disentanglement scores have a variety of characteristics in entanglement, for each of which a distinct strategy may be required to obtain a disentangled representation.

In this paper, we consider the problem of black-box optimization using Gaussian Process (GP) bandit optimization with a small number of batches. Assuming the unknown function has a low norm in the Reproducing Kernel Hilbert Space (RKHS), we introduce a batch algorithm inspired by batched finite-arm bandit algorithms, and show that it achieves the cumulative regret upper bound $O^\ast(\sqrt{T\gamma_T})$ using $O(\log\log T)$ batches within time horizon $T$, where the $O^\ast(\cdot)$ notation hides dimension-independent logarithmic factors and $\gamma_T$ is the maximum information gain associated with the kernel. This bound is near-optimal for several kernels of interest and improves on the typical $O^\ast(\sqrt{T}\gamma_T)$ bound, and our approach is arguably the simplest among algorithms attaining this improvement. In addition, in the case of a constant number of batches (not depending on $T$), we propose a modified version of our algorithm, and characterize how the regret is impacted by the number of batches, focusing on the squared exponential and Mat\'ern kernels. The algorithmic upper bounds are shown to be nearly minimax optimal via analogous algorithm-independent lower bounds.

The existence of the {\em typical set} is key for data compression strategies and for the emergence of robust statistical observables in macroscopic physical systems. Standard approaches derive its existence from a restricted set of dynamical constraints. However, given the enormous consequences for the understanding of the system's dynamics, and its role underlying the presence of stable, almost deterministic statistical patterns, a question arises whether typical sets exist in much more general scenarios. We demonstrate here that the typical set can be defined and characterized from general forms of entropy for a much wider class of stochastic processes than it was previously thought. This includes processes showing arbitrary path dependence, long range correlations or dynamic sampling spaces; suggesting that typicality is a generic property of stochastic processes, regardless of their complexity. Our results impact directly in the understanding of the stability of complex systems, open the door to new data compression strategies and points to the existence of statistical mechanics-like approaches to systems arbitrarily away from equilibrium with dynamic phase spaces. We argue that the potential emergence of robust properties in complex stochastic systems provided by the existence of typical sets has special relevance to biological systems.

We study entropy-regularized constrained Markov decision processes (CMDPs) under the soft-max parameterization, in which an agent aims to maximize the entropy-regularized value function while satisfying constraints on the expected total utility. By leveraging the entropy regularization, our theoretical analysis shows that its Lagrangian dual function is smooth and the Lagrangian duality gap can be decomposed into the primal optimality gap and the constraint violation. Furthermore, we propose an accelerated dual-descent method for entropy-regularized CMDPs. We prove that our method achieves the global convergence rate $\widetilde{\mathcal{O}}(1/T)$ for both the optimality gap and the constraint violation for entropy-regularized CMDPs. A discussion about a linear convergence rate for CMDPs with a single constraint is also provided.

The Dirichlet Process Mixture Model (DPMM) is a Bayesian non-parametric approach widely used for density estimation and clustering. In this manuscript, we study the choice of prior for the variance or precision matrix when Gaussian kernels are adopted. Typically, in the relevant literature, the assessment of mixture models is done by considering observations in a space of only a handful of dimensions. Instead, we are concerned with more realistic problems of higher dimensionality, in a space of up to 20 dimensions. We observe that the choice of prior is increasingly important as the dimensionality of the problem increases. After identifying certain undesirable properties of standard priors in problems of higher dimensionality, we review and implement possible alternative priors. The most promising priors are identified, as well as other factors that affect the convergence of MCMC samplers. Our results show that the choice of prior is critical for deriving reliable posterior inferences. This manuscript offers a thorough overview and comparative investigation into possible priors, with detailed guidelines for their implementation. Although our work focuses on the use of the DPMM in clustering, it is also applicable to density estimation.

Recent work in time-frequency analysis proposed to switch the focus from the maxima of the spectrogram toward its zeros. The zeros of signals in white Gaussian noise indeed form a random point pattern with a very stable structure. Using modern spatial statistics tools on the pattern of zeros of a spectrogram has led to component disentanglement and signal detection procedures. The major bottlenecks of this approach are the discretization of the Short-Time Fourier Transform and the necessarily bounded observation window in the time-frequency plane. Both impact the estimation of summary statistics of the zeros, which are then used in standard statistical tests. To circumvent these limitations, we propose a generalized time-frequency representation, which we call the Kravchuk transform. It naturally applies to finite signals, i.e., finite-dimensional vectors. The corresponding phase space, instead of the whole time-frequency plane, is compact, and particularly amenable to spatial statistics. On top of this, the Kravchuk transform has several natural properties for signal processing, among which covariance under the action of SO(3), invertibility and symmetry with respect to complex conjugation. We further show that the point process of the zeros of the Kravchuk transform of discrete white Gaussian noise coincides in law with the zeros of the spherical Gaussian Analytic Function. This implies that the law of the zeros is invariant under isometries of the sphere. Elaborating on this theorem, we develop a procedure for signal detection based on the spatial statistics of the zeros of the Kravchuk spectrogram. The statistical power of this procedure is assessed by intensive numerical simulation, and compares favorably with respect to state-of-the-art zeros-based detection procedures. Furthermore it appears to be particularly robust to both low signal-to-noise ratio and small number of samples.

Real-world optimization problems are generally not just black-box problems, but also involve mixed types of inputs in which discrete and continuous variables coexist. Such mixed-space optimization possesses the primary challenge of modeling complex interactions between the inputs. In this work, we propose a novel yet simple approach that entails exploiting the graph data structure to model the underlying relationship between variables, i.e., variables as nodes and interactions defined by edges. Then, a variational graph autoencoder is used to naturally take the interactions into account. We first provide empirical evidence of the existence of such graph structures and then suggest a joint framework of graph structure learning and latent space optimization to adaptively search for optimal graph connectivity. Experimental results demonstrate that our method shows remarkable performance, exceeding the existing approaches with significant computational efficiency for a number of synthetic and real-world tasks.

For discrete time systems, we show that the derivative of the (measure) transfer operator with respect to the system parameters is a divergence. For singular physical measures, which are limits of an orbit, we show that we typically only need the transfer operator to handle the unstable derivatives. Then we derive a divergence formula for the unstable derivative of transfer operators, which has no exploding intermediate quantities. This formula and hence the derivative of physical measures can be sampled by a few recursive relations on an orbit.

We exploit the relationship between the stochastic Koopman operator and the Kolmogorov backward equation to construct importance sampling schemes for stochastic differential equations. Specifically, we propose using eigenfunctions of the stochastic Koopman operator to approximate the Doob transform for an observable of interest (e.g., associated with a rare event) which in turn yields an approximation of the corresponding zero-variance importance sampling estimator. Our approach is broadly applicable and systematic, treating non-normal systems, non-gradient systems, and systems with oscillatory dynamics or rank-deficient noise in a common framework. In nonlinear settings where the stochastic Koopman eigenfunctions cannot be derived analytically, we use dynamic mode decomposition (DMD) methods to compute them numerically, but the framework is agnostic to the particular numerical method employed. Numerical experiments demonstrate that even coarse approximations of a few eigenfunctions, where the latter are built from non-rare trajectories, can produce effective importance sampling schemes for rare events.

Discovering causal structure among a set of variables is a fundamental problem in many empirical sciences. Traditional score-based casual discovery methods rely on various local heuristics to search for a Directed Acyclic Graph (DAG) according to a predefined score function. While these methods, e.g., greedy equivalence search, may have attractive results with infinite samples and certain model assumptions, they are usually less satisfactory in practice due to finite data and possible violation of assumptions. Motivated by recent advances in neural combinatorial optimization, we propose to use Reinforcement Learning (RL) to search for the DAG with the best scoring. Our encoder-decoder model takes observable data as input and generates graph adjacency matrices that are used to compute rewards. The reward incorporates both the predefined score function and two penalty terms for enforcing acyclicity. In contrast with typical RL applications where the goal is to learn a policy, we use RL as a search strategy and our final output would be the graph, among all graphs generated during training, that achieves the best reward. We conduct experiments on both synthetic and real datasets, and show that the proposed approach not only has an improved search ability but also allows a flexible score function under the acyclicity constraint.

北京阿比特科技有限公司