亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Language models are trained mostly on Web data, which often contains social stereotypes and biases that the models can inherit. This has potentially negative consequences, as models can amplify these biases in downstream tasks or applications. However, prior research has primarily focused on the English language, especially in the context of gender bias. In particular, grammatically gender-neutral languages such as Turkish are underexplored despite representing different linguistic properties to language models with possibly different effects on biases. In this paper, we fill this research gap and investigate the significance of gender bias in Turkish language models. We build upon existing bias evaluation frameworks and extend them to the Turkish language by translating existing English tests and creating new ones designed to measure gender bias in the context of T\"urkiye. Specifically, we also evaluate Turkish language models for their embedded ethnic bias toward Kurdish people. Based on the experimental results, we attribute possible biases to different model characteristics such as the model size, their multilingualism, and the training corpora. We make the Turkish gender bias dataset publicly available.

相關內容

When Reinforcement Learning (RL) agents are deployed in practice, they might impact their environment and change its dynamics. We propose a new framework to model this phenomenon, where the current environment depends on the deployed policy as well as its previous dynamics. This is a generalization of Performative RL (PRL) [Mandal et al., 2023]. Unlike PRL, our framework allows to model scenarios where the environment gradually adjusts to a deployed policy. We adapt two algorithms from the performative prediction literature to our setting and propose a novel algorithm called Mixed Delayed Repeated Retraining (MDRR). We provide conditions under which these algorithms converge and compare them using three metrics: number of retrainings, approximation guarantee, and number of samples per deployment. MDRR is the first algorithm in this setting which combines samples from multiple deployments in its training. This makes MDRR particularly suitable for scenarios where the environment's response strongly depends on its previous dynamics, which are common in practice. We experimentally compare the algorithms using a simulation-based testbed and our results show that MDRR converges significantly faster than previous approaches.

Complexity is a signature quality of interest in artificial life systems. Alongside other dimensions of assessment, it is common to quantify genome sites that contribute to fitness as a complexity measure. However, limitations to the sensitivity of fitness assays in models with implicit replication criteria involving rich biotic interactions introduce the possibility of difficult-to-detect ``cryptic'' adaptive sites, which contribute small fitness effects below the threshold of individual detectability or involve epistatic redundancies. Here, we propose three knockout-based assay procedures designed to quantify cryptic adaptive sites within digital genomes. We report initial tests of these methods on a simple genome model with explicitly configured site fitness effects. In these limited tests, estimation results reflect ground truth cryptic sequence complexities well. Presented work provides initial steps toward development of new methods and software tools that improve the resolution, rigor, and tractability of complexity analyses across alife systems, particularly those requiring expensive in situ assessments of organism fitness.

The principle of data minimization aims to reduce the amount of data collected, processed or retained to minimize the potential for misuse, unauthorized access, or data breaches. Rooted in privacy-by-design principles, data minimization has been endorsed by various global data protection regulations. However, its practical implementation remains a challenge due to the lack of a rigorous formulation. This paper addresses this gap and introduces an optimization framework for data minimization based on its legal definitions. It then adapts several optimization algorithms to perform data minimization and conducts a comprehensive evaluation in terms of their compliance with minimization objectives as well as their impact on user privacy. Our analysis underscores the mismatch between the privacy expectations of data minimization and the actual privacy benefits, emphasizing the need for approaches that account for multiple facets of real-world privacy risks.

Deep learning is a powerful set of techniques for detecting complex patterns in data. However, when the causal structure of that process is underspecified, deep learning models can be brittle, lacking robustness to shifts in the distribution of the data-generating process. In this paper, we turn to loop polarity analysis as a tool for specifying the causal structure of a data-generating process, in order to encode a more robust understanding of the relationship between system structure and system behavior within the deep learning pipeline. We use simulated epidemic data based on an SIR model to demonstrate how measuring the polarity of the different feedback loops that compose a system can lead to more robust inferences on the part of neural networks, improving the out-of-distribution performance of a deep learning model and infusing a system-dynamics-inspired approach into the machine learning development pipeline.

We propose a framework for the analysis of transmission channels in a large class of dynamic models. To this end, we formulate our approach both using graph theory and potential outcomes, which we show to be equivalent. Our method, labelled Transmission Channel Analysis (TCA), allows for the decomposition of total effects captured by impulse response functions into the effects flowing along transmission channels, thereby providing a quantitative assessment of the strength of various transmission channels. We establish that this requires no additional identification assumptions beyond the identification of the structural shock whose effects the researcher wants to decompose. Additionally, we prove that impulse response functions are sufficient statistics for the computation of transmission effects. We also demonstrate the empirical relevance of TCA for policy evaluation by decomposing the effects of various monetary policy shock measures into instantaneous implementation effects and effects that likely relate to forward guidance.

Large Language Models (LLMs) are increasingly integrated into critical decision-making processes, such as loan approvals and visa applications, where inherent biases can lead to discriminatory outcomes. In this paper, we examine the nuanced relationship between demographic attributes and socioeconomic biases in LLMs, a crucial yet understudied area of fairness in LLMs. We introduce a novel dataset of one million English sentences to systematically quantify socioeconomic biases across various demographic groups. Our findings reveal pervasive socioeconomic biases in both established models such as GPT-2 and state-of-the-art models like Llama 2 and Falcon. We demonstrate that these biases are significantly amplified when considering intersectionality, with LLMs exhibiting a remarkable capacity to extract multiple demographic attributes from names and then correlate them with specific socioeconomic biases. This research highlights the urgent necessity for proactive and robust bias mitigation techniques to safeguard against discriminatory outcomes when deploying these powerful models in critical real-world applications.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

北京阿比特科技有限公司