亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bill James' Pythagorean formula has for decades done an excellent job estimating a baseball team's winning percentage from very little data: if the average runs scored and allowed are denoted respectively by ${\rm RS}$ and ${\rm RA}$, there is some $\gamma$ such that the winning percentage is approximately ${\rm RS}^\gamma / ({\rm RS}^\gamma + {\rm RA}^\gamma)$. One important consequence is to determine the value of different players to the team, as it allows us to estimate how many more wins we would have given a fixed increase in run production. We summarize earlier work on the subject, and extend the earlier theoretical model of Miller (who estimated the run distributions as arising from independent Weibull distributions with the same shape parameter; this has been observed to describe the observed run data well). We now model runs scored and allowed as being drawn from independent Weibull distributions where the shape parameter is not necessarily the same, and then use the Method of Moments to solve a system of four equations in four unknowns. Doing so yields a predicted winning percentage that is consistently better than earlier models over the last 30 MLB seasons (1994 to 2023). This comes at a small cost as we no longer have a closed form expression but must evaluate a two-dimensional integral of two Weibull distributions and numerically estimate the solutions to the system of equations; as these are trivial to do with simple computational programs it is well worth adopting this framework and avoiding the issues of implementing the Method of Least Squares or the Method of Maximum Likelihood.

相關內容

AI systems have been known to amplify biases in real-world data. Explanations may help human-AI teams address these biases for fairer decision-making. Typically, explanations focus on salient input features. If a model is biased against some protected group, explanations may include features that demonstrate this bias, but when biases are realized through proxy features, the relationship between this proxy feature and the protected one may be less clear to a human. In this work, we study the effect of the presence of protected and proxy features on participants' perception of model fairness and their ability to improve demographic parity over an AI alone. Further, we examine how different treatments -- explanations, model bias disclosure and proxy correlation disclosure -- affect fairness perception and parity. We find that explanations help people detect direct but not indirect biases. Additionally, regardless of bias type, explanations tend to increase agreement with model biases. Disclosures can help mitigate this effect for indirect biases, improving both unfairness recognition and decision-making fairness. We hope that our findings can help guide further research into advancing explanations in support of fair human-AI decision-making.

This paper presents a new AI challenge, the Tales of Tribute AI Competition (TOTAIC), based on a two-player deck-building card game released with the High Isle chapter of The Elder Scrolls Online. Currently, there is no other AI competition covering Collectible Card Games (CCG) genre, and there has never been one that targets a deck-building game. Thus, apart from usual CCG-related obstacles to overcome, like randomness, hidden information, and large branching factor, the successful approach additionally requires long-term planning and versatility. The game can be tackled with multiple approaches, including classic adversarial search, single-player planning, and Neural Networks-based algorithms. This paper introduces the competition framework, describes the rules of the game, and presents the results of a tournament between sample AI agents.

Multimodal Large Language Models (MLLMs) have showcased impressive skills in tasks related to visual understanding and reasoning. Yet, their widespread application faces obstacles due to the high computational demands during both the training and inference phases, restricting their use to a limited audience within the research and user communities. In this paper, we investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha, which is designed to create synergy among various aspects: visual representation, language models, and optimization strategies. We show that without increasing the volume of training data, our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks. Through detailed discussion, we provide insights and guidelines for developing strong MSLMs that rival the capabilities of MLLMs. Our code is available at //github.com/zhuyiche/Mipha.

In their recent work, C. Doerr and Krejca (Transactions on Evolutionary Computation, 2023) proved upper bounds on the expected runtime of the randomized local search heuristic on generalized Needle functions. Based on these upper bounds, they deduce in a not fully rigorous manner a drastic influence of the needle radius $k$ on the runtime. In this short article, we add the missing lower bound necessary to determine the influence of parameter $k$ on the runtime. To this aim, we derive an exact description of the expected runtime, which also significantly improves the upper bound given by C. Doerr and Krejca. We also describe asymptotic estimates of the expected runtime.

Generative AI (GenAI) systems offer unprecedented opportunities for transforming professional and personal work, yet present challenges around prompting, evaluating and relying on outputs, and optimizing workflows. We argue that metacognition$\unicode{x2013}$the psychological ability to monitor and control one's thoughts and behavior$\unicode{x2013}$offers a valuable lens to understand and design for these usability challenges. Drawing on research in psychology and cognitive science, and recent GenAI user studies, we illustrate how GenAI systems impose metacognitive demands on users, requiring a high degree of metacognitive monitoring and control. We propose these demands could be addressed by integrating metacognitive support strategies into GenAI systems, and by designing GenAI systems to reduce their metacognitive demand by targeting explainability and customizability. Metacognition offers a coherent framework for understanding the usability challenges posed by GenAI, and provides novel research and design directions to advance human-AI interaction.

The growing popularity of generative AI, particularly ChatGPT, has sparked both enthusiasm and caution among practitioners and researchers in education. To effectively harness the full potential of ChatGPT in educational contexts, it is crucial to analyze its impact and suitability for different educational purposes. This paper takes an initial step in exploring the applicability of ChatGPT in a computer-supported collaborative learning (CSCL) environment. Using statistical analysis, we validate the shifts in student interactions during an asynchronous group brainstorming session by introducing ChatGPT as an instantaneous question-answering agent.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司