亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research.

相關內容

語(yu)音(yin)識(shi)(shi)別(bie)(bie)是(shi)計(ji)(ji)算(suan)(suan)(suan)機(ji)(ji)科學和(he)(he)計(ji)(ji)算(suan)(suan)(suan)語(yu)言學的一(yi)個(ge)跨學科子領域,它(ta)發(fa)展(zhan)了一(yi)些方法和(he)(he)技術(shu),使計(ji)(ji)算(suan)(suan)(suan)機(ji)(ji)可以將口語(yu)識(shi)(shi)別(bie)(bie)和(he)(he)翻譯(yi)成文本(ben)。 它(ta)也被稱為(wei)自動語(yu)音(yin)識(shi)(shi)別(bie)(bie)(ASR),計(ji)(ji)算(suan)(suan)(suan)機(ji)(ji)語(yu)音(yin)識(shi)(shi)別(bie)(bie)或語(yu)音(yin)轉文本(ben)(STT)。它(ta)整合了計(ji)(ji)算(suan)(suan)(suan)機(ji)(ji)科學,語(yu)言學和(he)(he)計(ji)(ji)算(suan)(suan)(suan)機(ji)(ji)工程領域的知識(shi)(shi)和(he)(he)研究。

Self-learning Monte Carlo (SLMC) methods are recently proposed to accelerate Markov chain Monte Carlo (MCMC) methods using a machine learning model. With latent generative models, SLMC methods realize efficient Monte Carlo updates with less autocorrelation. However, SLMC methods are difficult to directly apply to multimodal distributions for which training data are difficult to obtain. To solve the limitation, we propose parallel adaptive annealing, which makes SLMC methods directly apply to multimodal distributions with a gradually trained proposal while annealing target distribution. Parallel adaptive annealing is based on (i) sequential learning with annealing to inherit and update the model parameters, (ii) adaptive annealing to automatically detect under-learning, and (iii) parallel annealing to mitigate mode collapse of proposal models. We also propose VAE-SLMC method which utilizes a variational autoencoder (VAE) as a proposal of SLMC to make efficient parallel proposals independent of any previous state using recently clarified quantitative properties of VAE. Experiments validate that our method can proficiently obtain accurate samples from multiple multimodal toy distributions and practical multimodal posterior distributions, which is difficult to achieve with the existing SLMC methods.

Machine learning (ML) methods are proliferating in scientific research. However, the adoption of these methods has been accompanied by failures of validity, reproducibility, and generalizability. These failures can hinder scientific progress, lead to false consensus around invalid claims, and undermine the credibility of ML-based science. ML methods are often applied and fail in similar ways across disciplines. Motivated by this observation, our goal is to provide clear reporting standards for ML-based science. Drawing from an extensive review of past literature, we present the REFORMS checklist ($\textbf{Re}$porting Standards $\textbf{For}$ $\textbf{M}$achine Learning Based $\textbf{S}$cience). It consists of 32 questions and a paired set of guidelines. REFORMS was developed based on a consensus of 19 researchers across computer science, data science, mathematics, social sciences, and biomedical sciences. REFORMS can serve as a resource for researchers when designing and implementing a study, for referees when reviewing papers, and for journals when enforcing standards for transparency and reproducibility.

Learnersourcing involves students generating and sharing learning resources with their peers. When learnersourcing multiple-choice questions, creating explanations for the generated questions is a crucial step as it facilitates a deeper understanding of the related concepts. However, it is often difficult for students to craft effective explanations due to limited subject understanding and a tendency to merely restate the question stem, distractors, and correct answer. To help scaffold this task, in this work we propose a self-reinforcement large-language-model framework, with the goal of generating and evaluating explanations automatically. Comprising three modules, the framework generates student-aligned explanations, evaluates these explanations to ensure their quality and iteratively enhances the explanations. If an explanation's evaluation score falls below a defined threshold, the framework iteratively refines and reassesses the explanation. Importantly, our framework emulates the manner in which students compose explanations at the relevant grade level. For evaluation, we had a human subject-matter expert compare the explanations generated by students with the explanations created by the open-source large language model Vicuna-13B, a version of Vicuna-13B that had been fine-tuned using our method, and by GPT-4. We observed that, when compared to other large language models, GPT-4 exhibited a higher level of creativity in generating explanations. We also found that explanations generated by GPT-4 were ranked higher by the human expert than both those created by the other models and the original student-created explanations. Our findings represent a significant advancement in enriching the learnersourcing experience for students and enhancing the capabilities of large language models in educational applications.

Directed Exploration is a crucial challenge in reinforcement learning (RL), especially when rewards are sparse. Information-directed sampling (IDS), which optimizes the information ratio, seeks to do so by augmenting regret with information gain. However, estimating information gain is computationally intractable or relies on restrictive assumptions which prohibit its use in many practical instances. In this work, we posit an alternative exploration incentive in terms of the integral probability metric (IPM) between a current estimate of the transition model and the unknown optimal, which under suitable conditions, can be computed in closed form with the kernelized Stein discrepancy (KSD). Based on KSD, we develop a novel algorithm \algo: \textbf{STE}in information dir\textbf{E}cted exploration for model-based \textbf{R}einforcement Learn\textbf{ING}. To enable its derivation, we develop fundamentally new variants of KSD for discrete conditional distributions. {We further establish that {\algo} archives sublinear Bayesian regret, improving upon prior learning rates of information-augmented MBRL.} Experimentally, we show that the proposed algorithm is computationally affordable and outperforms several prior approaches.

Weakly supervised learning is a popular approach for training machine learning models in low-resource settings. Instead of requesting high-quality yet costly human annotations, it allows training models with noisy annotations obtained from various weak sources. Recently, many sophisticated approaches have been proposed for robust training under label noise, reporting impressive results. In this paper, we revisit the setup of these approaches and find that the benefits brought by these approaches are significantly overestimated. Specifically, we find that the success of existing weakly supervised learning approaches heavily relies on the availability of clean validation samples which, as we show, can be leveraged much more efficiently by simply training on them. After using these clean labels in training, the advantages of using these sophisticated approaches are mostly wiped out. This remains true even when reducing the size of the available clean data to just five samples per class, making these approaches impractical. To understand the true value of weakly supervised learning, we thoroughly analyze diverse NLP datasets and tasks to ascertain when and why weakly supervised approaches work. Based on our findings, we provide recommendations for future research.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

Deep learning has been the mainstream technique in natural language processing (NLP) area. However, the techniques require many labeled data and are less generalizable across domains. Meta-learning is an arising field in machine learning studying approaches to learn better learning algorithms. Approaches aim at improving algorithms in various aspects, including data efficiency and generalizability. Efficacy of approaches has been shown in many NLP tasks, but there is no systematic survey of these approaches in NLP, which hinders more researchers from joining the field. Our goal with this survey paper is to offer researchers pointers to relevant meta-learning works in NLP and attract more attention from the NLP community to drive future innovation. This paper first introduces the general concepts of meta-learning and the common approaches. Then we summarize task construction settings and application of meta-learning for various NLP problems and review the development of meta-learning in NLP community.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

北京阿比特科技有限公司