For an approximate solution of the non-stationary nonlinear Navier-Stokes equations for the flow of an incompressible viscous fluid, depending on the set of input data and the geometry of the domain, the area of optimal parameters in the variables $\nu$ and $\nu^{\ast}$ is experimentally determined depending on $\delta$ included in the definition of the $R_{\nu}$-generalized solution of the problem and the degree of the weight function in the basis of the finite element method. To discretize the problem in time, the Runge-Kutta methods of the first and second orders were used. The areas of optimal parameters for various values of the incoming angles are established.
We consider the general problem of Bayesian binary regression and we introduce a new class of distributions, the Perturbed Unified Skew Normal (pSUN, henceforth), which generalizes the Unified Skew-Normal (SUN) class. We show that the new class is conjugate to any binary regression model, provided that the link function may be expressed as a scale mixture of Gaussian densities. We discuss in detail the popular logit case, and we show that, when a logistic regression model is combined with a Gaussian prior, posterior summaries such as cumulants and normalizing constants can be easily obtained through the use of an importance sampling approach, opening the way to straightforward variable selection procedures. For more general priors, the proposed methodology is based on a simple Gibbs sampler algorithm. We also claim that, in the p > n case, the proposed methodology shows better performances - both in terms of mixing and accuracy - compared to the existing methods. We illustrate the performance through several simulation studies and two data analyses.
We consider an unknown multivariate function representing a system-such as a complex numerical simulator-taking both deterministic and uncertain inputs. Our objective is to estimate the set of deterministic inputs leading to outputs whose probability (with respect to the distribution of the uncertain inputs) of belonging to a given set is less than a given threshold. This problem, which we call Quantile Set Inversion (QSI), occurs for instance in the context of robust (reliability-based) optimization problems, when looking for the set of solutions that satisfy the constraints with sufficiently large probability. To solve the QSI problem, we propose a Bayesian strategy based on Gaussian process modeling and the Stepwise Uncertainty Reduction (SUR) principle, to sequentially choose the points at which the function should be evaluated to efficiently approximate the set of interest. We illustrate the performance and interest of the proposed SUR strategy through several numerical experiments.
A numerical method is proposed for simulation of composite open quantum systems. It is based on Lindblad master equations and adiabatic elimination. Each subsystem is assumed to converge exponentially towards a stationary subspace, slightly impacted by some decoherence channels and weakly coupled to the other subsystems. This numerical method is based on a perturbation analysis with an asymptotic expansion. It exploits the formulation of the slow dynamics with reduced dimension. It relies on the invariant operators of the local and nominal dissipative dynamics attached to each subsystem. Second-order expansion can be computed only with local numerical calculations. It avoids computations on the tensor-product Hilbert space attached to the full system. This numerical method is particularly well suited for autonomous quantum error correction schemes. Simulations of such reduced models agree with complete full model simulations for typical gates acting on one and two cat-qubits (Z, ZZ and CNOT) when the mean photon number of each cat-qubit is less than 8. For larger mean photon numbers and gates with three cat-qubits (ZZZ and CCNOT), full model simulations are almost impossible whereas reduced model simulations remain accessible. In particular, they capture both the dominant phase-flip error-rate and the very small bit-flip error-rate with its exponential suppression versus the mean photon number.
We construct a Convolution Quadrature (CQ) scheme for the quasilinear subdiffusion equation and supply it with the fast and oblivious implementation. In particular we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the Finite Element Method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. As a passing result, we also obtain a discrete Gronwall inequality for the CQ, which is a crucial ingredient of our convergence proof based on the energy method. The paper is concluded with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.
Neyman (1923/1990) introduced the randomization model, which contains the notation of potential outcomes to define causal effects and a framework for large-sample inference based on the design of the experiment. However, the existing theory for this framework is far from complete especially when the number of treatment levels diverges and the treatment group sizes vary. We provide a unified discussion of statistical inference under the randomization model with general treatment group sizes. We formulate the estimator in terms of a linear permutational statistic and use results based on Stein's method to derive various Berry--Esseen bounds on the linear and quadratic functions of the estimator. These new Berry--Esseen bounds serve as basis for design-based causal inference with possibly diverging treatment levels and a diverging number of causal parameters of interest. We also fill an important gap by proposing novel variance estimators for experiments with possibly many treatment levels without replications. Equipped with the newly developed results, design-based causal inference in general settings becomes more convenient with stronger theoretical guarantees.
We introduce a semi-explicit time-stepping scheme of second order for linear poroelasticity satisfying a weak coupling condition. Here, semi-explicit means that the system, which needs to be solved in each step, decouples and hence improves the computational efficiency. The construction and the convergence proof are based on the connection to a differential equation with two time delays, namely one and two times the step size. Numerical experiments confirm the theoretical results and indicate the applicability to higher-order schemes.
We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path. While interior point methods follow the central path with an iterative algorithm that works with successive linearizations of the perturbed KKT conditions, we perform a single simulation working directly with the nonlinear complementarity equations. Combining our approach with iterative refinement techniques, we obtain an exact solution to a linear optimization problem involving $m$ constraints and $n$ variables using at most $\mathcal{O} \left( (m + n) \text{nnz} (A) \kappa (\mathcal{M}) L \cdot \text{polylog} \left(m, n, \kappa (\mathcal{M}) \right) \right)$ elementary gates and $\mathcal{O} \left( \text{nnz} (A) L \right)$ classical arithmetic operations, where $ \text{nnz} (A)$ is the total number of non-zero elements found in the constraint matrix, $L$ denotes binary input length of the problem data, and $\kappa (\mathcal{M})$ is a condition number that depends only on the problem data.
We describe a novel operator-splitting approach to numerical relativistic magnetohydrodynamics designed to expand its applicability to the domain of ultra-high magnetisation. In this approach, the electromagnetic field is split into the force-free component, governed by the equations of force-free degenerate electrodynamics (FFDE), and the perturbation component, governed by the perturbation equations derived from the full system of relativistic magnetohydrodynamics (RMHD). The combined system of the FFDE and perturbation equations is integrated simultaneously, for which various numerical techniques developed for hyperbolic conservation laws can be used. At the end of every time-step of numerical integration, the force-free and the perturbation components of the electromagnetic field are recombined and the result is regarded as the initial value of the force-free component for the next time-step, whereas the initial value of the perturbation component is set to zero. To explore the potential of this approach, we build a 3rd-order WENO code, which was used to carry out 1D and 2D test simulations. Their results show that this operator-splitting approach allows us to bypass the stiffness of RMHD in the ultra-high-magnetisation regime where the perturbation component becomes very small. At the same time, the cod
A new linear relaxation system for nonconservative hyperbolic systems is introduced, in which a nonlocal source term accounts for the nonconservative product of the original system. Using an asymptotic analysis the relaxation limit and its stability are investigated. It is shown that the path-conservative Lax-Friedrichs scheme arises from a discrete limit of an implicit-explicit scheme for the relaxation system. The relaxation approach is further employed to couple two nonconservative systems at a static interface. A coupling strategy motivated from conservative Kirchhoff conditions is introduced and a corresponding Riemann solver provided. A fully discrete scheme for coupled nonconservative products is derived and studied in terms of path-conservation. Numerical experiments applying the approach to a coupled model of vascular blood flow are presented.
Nonlinear differential equations exhibit rich phenomena in many fields but are notoriously challenging to solve. Recently, Liu et al. [1] demonstrated the first efficient quantum algorithm for dissipative quadratic differential equations under the condition $R < 1$, where $R$ measures the ratio of nonlinearity to dissipation using the $\ell_2$ norm. Here we develop an efficient quantum algorithm based on [1] for reaction-diffusion equations, a class of nonlinear partial differential equations (PDEs). To achieve this, we improve upon the Carleman linearization approach introduced in [1] to obtain a faster convergence rate under the condition $R_D < 1$, where $R_D$ measures the ratio of nonlinearity to dissipation using the $\ell_{\infty}$ norm. Since $R_D$ is independent of the number of spatial grid points $n$ while $R$ increases with $n$, the criterion $R_D<1$ is significantly milder than $R<1$ for high-dimensional systems and can stay convergent under grid refinement for approximating PDEs. As applications of our quantum algorithm we consider the Fisher-KPP and Allen-Cahn equations, which have interpretations in classical physics. In particular, we show how to estimate the mean square kinetic energy in the solution by postprocessing the quantum state that encodes it to extract derivative information.