Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to $\sim$16$\times$ speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.
Achieving social acceptance is one of the main goals of Social Robotic Navigation. Despite this topic has received increasing interest in recent years, most of the research has focused on driving the robotic agent along obstacle-free trajectories, planning around estimates of future human motion to respect personal distances and optimize navigation. However, social interactions in everyday life are also dictated by norms that do not strictly depend on movement, such as when standing at the end of a queue rather than cutting it. In this paper, we propose a novel method to recognize common social scenarios and modify a traditional planner's cost function to adapt to them. This solution enables the robot to carry out different social navigation behaviors that would not arise otherwise, maintaining the robustness of traditional navigation. Our approach allows the robot to learn different social norms with a single learned model, rather than having different modules for each task. As a proof of concept, we consider the tasks of queuing and respect interaction spaces of groups of people talking to one another, but the method can be extended to other human activities that do not involve motion.
Controllable music generation promotes the interaction between humans and composition systems by projecting the users' intent on their desired music. The challenge of introducing controllability is an increasingly important issue in the symbolic music generation field. When building controllable generative popular multi-instrument music systems, two main challenges typically present themselves, namely weak controllability and poor music quality. To address these issues, we first propose spatiotemporal features as powerful and fine-grained controls to enhance the controllability of the generative model. In addition, an efficient music representation called REMI_Track is designed to convert multitrack music into multiple parallel music sequences and shorten the sequence length of each track with Byte Pair Encoding (BPE) techniques. Subsequently, we release BandControlNet, a conditional model based on parallel Transformers, to tackle the multiple music sequences and generate high-quality music samples that are conditioned to the given spatiotemporal control features. More concretely, the two specially designed modules of BandControlNet, namely structure-enhanced self-attention (SE-SA) and Cross-Track Transformer (CTT), are utilized to strengthen the resulting musical structure and inter-track harmony modeling respectively. Experimental results tested on two popular music datasets of different lengths demonstrate that the proposed BandControlNet outperforms other conditional music generation models on most objective metrics in terms of fidelity and inference speed and shows great robustness in generating long music samples. The subjective evaluations show BandControlNet trained on short datasets can generate music with comparable quality to state-of-the-art models, while outperforming them significantly using longer datasets.
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs, undermining their reliability. A comprehensive quantitative evaluation is necessary to identify and understand the extent of hallucinations in these models. However, existing benchmarks are often limited in scope, focusing mainly on object hallucinations. Furthermore, current evaluation methods struggle to effectively address the subtle semantic distinctions between model outputs and reference data, as well as the balance between hallucination and informativeness. To address these issues, we introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases. Moreover, we propose a large language model (LLM)-based two-stage evaluation framework that generalizes the popular CHAIR metric and incorporates both faithfulness and coverage into the evaluation. Experiments on 10 established LVLMs demonstrate that our evaluation metric is more comprehensive and better correlated with humans than existing work when evaluating on our challenging human-annotated benchmark dataset. Our work also highlights the critical balance between faithfulness and coverage of model outputs, and encourages future works to address hallucinations in LVLMs while keeping their outputs informative.
Typical schemes for automated red-teaming large language models (LLMs) focus on discovering prompts that trigger a frozen language model (the defender) to generate toxic text. This often results in the prompting model (the adversary) producing text that is unintelligible and unlikely to arise. Here, we propose a reinforcement learning formulation of the LLM red-teaming task which allows us to discover prompts that both (1) trigger toxic outputs from a frozen defender and (2) have low perplexity as scored by the defender. We argue these cases are most pertinent in a red-teaming setting because of their likelihood to arise during normal use of the defender model. We solve this formulation through a novel online and weakly supervised variant of Identity Preference Optimization (IPO) on GPT-2 and GPT-2 XL defenders. We demonstrate that our policy is capable of generating likely prompts that also trigger toxicity. Finally, we qualitatively analyze learned strategies, trade-offs of likelihood and toxicity, and discuss implications. Source code is available for this project at: //github.com/sisl/ASTPrompter/.
As supervised fine-tuning of pre-trained models within NLP applications increases in popularity, larger corpora of annotated data are required, especially with increasing parameter counts in large language models. Active learning, which attempts to mine and annotate unlabeled instances to improve model performance maximally fast, is a common choice for reducing the annotation cost; however, most methods typically ignore class imbalance and either assume access to initial annotated data or require multiple rounds of active learning selection before improving rare classes. We present STENCIL, which utilizes a set of text exemplars and the recently proposed submodular mutual information to select a set of weakly labeled rare-class instances that are then strongly labeled by an annotator. We show that STENCIL improves overall accuracy by $10\%-18\%$ and rare-class F-1 score by $17\%-40\%$ on multiple text classification datasets over common active learning methods within the class-imbalanced cold-start setting.
3D Gaussian Splatting (3DGS) creates a radiance field consisting of 3D Gaussians to represent a scene. With sparse training views, 3DGS easily suffers from overfitting, negatively impacting rendering. This paper introduces a new co-regularization perspective for improving sparse-view 3DGS. When training two 3D Gaussian radiance fields, we observe that the two radiance fields exhibit point disagreement and rendering disagreement that can unsupervisedly predict reconstruction quality, stemming from the randomness of densification implementation. We further quantify the two disagreements and demonstrate the negative correlation between them and accurate reconstruction, which allows us to identify inaccurate reconstruction without accessing ground-truth information. Based on the study, we propose CoR-GS, which identifies and suppresses inaccurate reconstruction based on the two disagreements: (1) Co-pruning considers Gaussians that exhibit high point disagreement in inaccurate positions and prunes them. (2) Pseudo-view co-regularization considers pixels that exhibit high rendering disagreement are inaccurate and suppress the disagreement. Results on LLFF, Mip-NeRF360, DTU, and Blender demonstrate that CoR-GS effectively regularizes the scene geometry, reconstructs the compact representations, and achieves state-of-the-art novel view synthesis quality under sparse training views.
Recent advancements in industrial Anomaly Detection (AD) have shown that incorporating a few anomalous samples during training can significantly boost accuracy. However, this performance improvement comes at a high cost: extensive annotation efforts, which are often impractical in real-world applications. In this work, we propose a novel framework called "Weakly-supervised RESidual Transformer" (WeakREST), which aims to achieve high AD accuracy while minimizing the need for extensive annotations. First, we reformulate the pixel-wise anomaly localization task into a block-wise classification problem. By shifting the focus to block-wise level, we can drastically reduce the amount of required annotations without compromising on the accuracy of anomaly detection Secondly, we design a residual-based transformer model, termed "Positional Fast Anomaly Residuals" (PosFAR), to classify the image blocks in real time. We further propose to label the anomalous regions using only bounding boxes or image tags as weaker labels, leading to a semi-supervised learning setting. On the benchmark dataset MVTec-AD, our proposed WeakREST framework achieves a remarkable Average Precision (AP) of 83.0%, significantly outperforming the previous best result of 75.8% in the unsupervised setting. In the supervised AD setting, WeakREST further improves performance, attaining an AP of 87.6% compared to the previous best of 78.6%. Notably, even when utilizing weaker labels based on bounding boxes, WeakREST surpasses recent leading methods that rely on pixel-wise supervision, achieving an AP of 87.1% against the prior best of 78.6% on MVTec-AD. This precision advantage is also consistently observed on other well-known AD datasets, such as BTAD and KSDD2.
The recent enthusiasm for open-world vision systems show the high interest of the community to perform perception tasks outside of the closed-vocabulary benchmark setups which have been so popular until now. Being able to discover objects in images/videos without knowing in advance what objects populate the dataset is an exciting prospect. But how to find objects without knowing anything about them? Recent works show that it is possible to perform class-agnostic unsupervised object localization by exploiting self-supervised pre-trained features. We propose here a survey of unsupervised object localization methods that discover objects in images without requiring any manual annotation in the era of self-supervised ViTs. We gather links of discussed methods in the repository //github.com/valeoai/Awesome-Unsupervised-Object-Localization.
The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN (DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and 0.9% higher on Small level.
The combination of Reinforcement Learning (RL) with deep learning has led to a series of impressive feats, with many believing (deep) RL provides a path towards generally capable agents. However, the success of RL agents is often highly sensitive to design choices in the training process, which may require tedious and error-prone manual tuning. This makes it challenging to use RL for new problems, while also limits its full potential. In many other areas of machine learning, AutoML has shown it is possible to automate such design choices and has also yielded promising initial results when applied to RL. However, Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL, that naturally produce a different set of methods. As such, AutoRL has been emerging as an important area of research in RL, providing promise in a variety of applications from RNA design to playing games such as Go. Given the diversity of methods and environments considered in RL, much of the research has been conducted in distinct subfields, ranging from meta-learning to evolution. In this survey we seek to unify the field of AutoRL, we provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.