Underspecification and fairness in machine learning (ML) applications have recently become two prominent issues in the ML community. Acoustic scene classification (ASC) applications have so far remained unaffected by this discussion, but are now becoming increasingly used in real-world systems where fairness and reliability are critical aspects. In this work, we argue for the need of a more holistic evaluation process for ASC models through disaggregated evaluations. This entails taking into account performance differences across several factors, such as city, location, and recording device. Although these factors play a well-understood role in the performance of ASC models, most works report single evaluation metrics taking into account all different strata of a particular dataset. We argue that metrics computed on specific sub-populations of the underlying data contain valuable information about the expected real-world behaviour of proposed systems, and their reporting could improve the transparency and trustability of such systems. We demonstrate the effectiveness of the proposed evaluation process in uncovering underspecification and fairness problems exhibited by several standard ML architectures when trained on two widely-used ASC datasets. Our evaluation shows that all examined architectures exhibit large biases across all factors taken into consideration, and in particular with respect to the recording location. Additionally, different architectures exhibit different biases even though they are trained with the same experimental configurations.
Recent advances in machine learning have created increasing interest in solving visual computing problems using a class of coordinate-based neural networks that parametrize physical properties of scenes or objects across space and time. These methods, which we call neural fields, have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation. However, due to rapid progress in a short time, many papers exist but a comprehensive review and formulation of the problem has not yet emerged. In this report, we address this limitation by providing context, mathematical grounding, and an extensive review of literature on neural fields. This report covers research along two dimensions. In Part I, we focus on techniques in neural fields by identifying common components of neural field methods, including different representations, architectures, forward mapping, and generalization methods. In Part II, we focus on applications of neural fields to different problems in visual computing, and beyond (e.g., robotics, audio). Our review shows the breadth of topics already covered in visual computing, both historically and in current incarnations, demonstrating the improved quality, flexibility, and capability brought by neural fields methods. Finally, we present a companion website that contributes a living version of this review that can be continually updated by the community.
The concern of overconfident mis-predictions under distributional shift demands extensive reliability research on Graph Neural Networks used in critical tasks in drug discovery. Here we first introduce CardioTox, a real-world benchmark on drug cardio-toxicity to facilitate such efforts. Our exploratory study shows overconfident mis-predictions are often distant from training data. That leads us to develop distance-aware GNNs: GNN-SNGP. Through evaluation on CardioTox and three established benchmarks, we demonstrate GNN-SNGP's effectiveness in increasing distance-awareness, reducing overconfident mis-predictions and making better calibrated predictions without sacrificing accuracy performance. Our ablation study further reveals the representation learned by GNN-SNGP improves distance-preservation over its base architecture and is one major factor for improvements.
Seamless human robot interaction (HRI) and cooperative human-robot (HR) teaming critically rely upon accurate and timely human mental workload (MW) models. Cognitive Load Theory (CLT) suggests representative physical environments produce representative mental processes; physical environment fidelity corresponds with improved modeling accuracy. Virtual Reality (VR) systems provide immersive environments capable of replicating complicated scenarios, particularly those associated with high-risk, high-stress scenarios. Passive biosignal modeling shows promise as a noninvasive method of MW modeling. However, VR systems rarely include multimodal psychophysiological feedback or capitalize on biosignal data for online MW modeling. Here, we develop a novel VR simulation pipeline, inspired by the NASA Multi-Attribute Task Battery II (MATB-II) task architecture, capable of synchronous collection of objective performance, subjective performance, and passive human biosignals in a simulated hazardous exploration environment. Our system design extracts and publishes biofeatures through the Robot Operating System (ROS), facilitating real time psychophysiology-based MW model integration into complete end-to-end systems. A VR simulation pipeline capable of evaluating MWs online could be foundational for advancing HR systems and VR experiences by enabling these systems to adaptively alter their behaviors in response to operator MW.
Twitter is perhaps the social media more amenable for research. It requires only a few steps to obtain information, and there are plenty of libraries that can help in this regard. Nonetheless, knowing whether a particular event is expressed on Twitter is a challenging task that requires a considerable collection of tweets. This proposal aims to facilitate, to a researcher interested, the process of mining events on Twitter by opening a collection of processed information taken from Twitter since December 2015. The events could be related to natural disasters, health issues, and people's mobility, among other studies that can be pursued with the library proposed. Different applications are presented in this contribution to illustrate the library's capabilities: an exploratory analysis of the topics discovered in tweets, a study on similarity among dialects of the Spanish language, and a mobility report on different countries. In summary, the Python library presented is applied to different domains and retrieves a plethora of information in terms of frequencies by day of words and bi-grams of words for Arabic, English, Spanish, and Russian languages. As well as mobility information related to the number of travels among locations for more than 200 countries or territories.
Joint modeling of a large number of variables often requires dimension reduction strategies that lead to structural assumptions of the underlying correlation matrix, such as equal pair-wise correlations within subsets of variables. The underlying correlation matrix is thus of interest for both model specification and model validation. In this paper, we develop tests of the hypothesis that the entries of the Kendall rank correlation matrix are linear combinations of a smaller number of parameters. The asymptotic behavior of the proposed test statistics is investigated both when the dimension is fixed and when it grows with the sample size. We pay special attention to the restricted hypothesis of partial exchangeability, which contains full exchangeability as a special case. We show that under partial exchangeability, the test statistics and their large-sample distributions simplify, which leads to computational advantages and better performance of the tests. We propose various scalable numerical strategies for implementation of the proposed procedures, investigate their behavior through simulations and power calculations under local alternatives, and demonstrate their use on a real dataset of mean sea levels at various geographical locations.
Specialized domain knowledge is often necessary to accurately annotate training sets for in-depth analysis, but can be burdensome and time-consuming to acquire from domain experts. This issue arises prominently in automated behavior analysis, in which agent movements or actions of interest are detected from video tracking data. To reduce annotation effort, we present TREBA: a method to learn annotation-sample efficient trajectory embedding for behavior analysis, based on multi-task self-supervised learning. The tasks in our method can be efficiently engineered by domain experts through a process we call "task programming", which uses programs to explicitly encode structured knowledge from domain experts. Total domain expert effort can be reduced by exchanging data annotation time for the construction of a small number of programmed tasks. We evaluate this trade-off using data from behavioral neuroscience, in which specialized domain knowledge is used to identify behaviors. We present experimental results in three datasets across two domains: mice and fruit flies. Using embeddings from TREBA, we reduce annotation burden by up to a factor of 10 without compromising accuracy compared to state-of-the-art features. Our results thus suggest that task programming and self-supervision can be an effective way to reduce annotation effort for domain experts.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Generating realistic images from scene graphs asks neural networks to be able to reason about object relationships and compositionality. As a relatively new task, how to properly ensure the generated images comply with scene graphs or how to measure task performance remains an open question. In this paper, we propose to harness scene graph context to improve image generation from scene graphs. We introduce a scene graph context network that pools features generated by a graph convolutional neural network that are then provided to both the image generation network and the adversarial loss. With the context network, our model is trained to not only generate realistic looking images, but also to better preserve non-spatial object relationships. We also define two novel evaluation metrics, the relation score and the mean opinion relation score, for this task that directly evaluate scene graph compliance. We use both quantitative and qualitative studies to demonstrate that our pro-posed model outperforms the state-of-the-art on this challenging task.
We study the use of the Wave-U-Net architecture for speech enhancement, a model introduced by Stoller et al for the separation of music vocals and accompaniment. This end-to-end learning method for audio source separation operates directly in the time domain, permitting the integrated modelling of phase information and being able to take large temporal contexts into account. Our experiments show that the proposed method improves several metrics, namely PESQ, CSIG, CBAK, COVL and SSNR, over the state-of-the-art with respect to the speech enhancement task on the Voice Bank corpus (VCTK) dataset. We find that a reduced number of hidden layers is sufficient for speech enhancement in comparison to the original system designed for singing voice separation in music. We see this initial result as an encouraging signal to further explore speech enhancement in the time-domain, both as an end in itself and as a pre-processing step to speech recognition systems.
The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.