亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The exponential trapezoidal rule is proposed and analyzed for the numerical integration of semilinear integro-differential equations. Although the method is implicit, the numerical solution is easily obtained by standard fixed-point iteration, making its implementation straightforward. Second-order convergence in time is shown in an abstract Hilbert space framework under reasonable assumptions on the problem. Numerical experiments illustrate the proven order of convergence.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

This paper introduces a second-order method for solving general elliptic partial differential equations (PDEs) on irregular domains using GPU acceleration, based on Ying's kernel-free boundary integral (KFBI) method. The method addresses limitations imposed by CFL conditions in explicit schemes and accuracy issues in fully implicit schemes for the Laplacian operator. To overcome these challenges, the paper employs a series of second-order time discrete schemes and splits the Laplacian operator into explicit and implicit components. Specifically, the Crank-Nicolson method discretizes the heat equation in the temporal dimension, while the implicit scheme is used for the wave equation. The Schrodinger equation is treated using the Strang splitting method. By discretizing the temporal dimension implicitly, the heat, wave, and Schrodinger equations are transformed into a sequence of elliptic equations. The Laplacian operator on the right-hand side of the elliptic equation is obtained from the numerical scheme rather than being discretized and corrected by the five-point difference method. A Cartesian grid-based KFBI method is employed to solve the resulting elliptic equations. GPU acceleration, achieved through a parallel Cartesian grid solver, enhances the computational efficiency by exploiting high degrees of parallelism. Numerical results demonstrate that the proposed method achieves second-order accuracy for the heat, wave, and Schrodinger equations. Furthermore, the GPU-accelerated solvers for the three types of time-dependent equations exhibit a speedup of 30 times compared to CPU-based solvers.

The superiority of stochastic symplectic methods over non-symplectic counterparts has been verified by plenty of numerical experiments, especially in capturing the asymptotic behaviour of the underlying solution process. How can one theoretically explain this superiority? This paper gives an answer to this problem from the perspective of the law of iterated logarithm, taking the linear stochastic Hamiltonian system in Hilbert space as a test model. The main contribution is twofold. First, by fully utilizing the time-change theorem for martingales and the Borell--TIS inequality, we prove that the upper limit of the exact solution with a specific scaling function almost surely equals some non-zero constant, thus confirming the validity of the law of iterated logarithm. Second, we prove that stochastic symplectic fully discrete methods asymptotically preserve the law of iterated logarithm, but non-symplectic ones do not. This reveals the good ability of stochastic symplectic methods in characterizing the almost sure asymptotic growth of the utmost fluctuation of the underlying solution process. Applications of our results to the linear stochastic oscillator and the linear stochastic Schrodinger equation are also presented.

Solving high-dimensional partial differential equations necessitates methods free of exponential scaling in the dimension of the problem. This work introduces a tensor network approach for the Kolmogorov backward equation via approximating directly the Markov operator. We show that the high-dimensional Markov operator can be obtained under a functional hierarchical tensor (FHT) ansatz with a hierarchical sketching algorithm. When the terminal condition admits an FHT ansatz, the proposed operator outputs an FHT ansatz for the PDE solution through an efficient functional tensor network contraction procedure. In addition, the proposed operator-based approach also provides an efficient way to solve the Kolmogorov forward equation when the initial distribution is in an FHT ansatz. We apply the proposed approach successfully to two challenging time-dependent Ginzburg-Landau models with hundreds of variables.

Many analyses of multivariate data focus on evaluating the dependence between two sets of variables, rather than the dependence among individual variables within each set. Canonical correlation analysis (CCA) is a classical data analysis technique that estimates parameters describing the dependence between such sets. However, inference procedures based on traditional CCA rely on the assumption that all variables are jointly normally distributed. We present a semiparametric approach to CCA in which the multivariate margins of each variable set may be arbitrary, but the dependence between variable sets is described by a parametric model that provides low-dimensional summaries of dependence. While maximum likelihood estimation in the proposed model is intractable, we propose two estimation strategies: one using a pseudolikelihood for the model and one using a Markov chain Monte Carlo (MCMC) algorithm that provides Bayesian estimates and confidence regions for the between-set dependence parameters. The MCMC algorithm is derived from a multirank likelihood function, which uses only part of the information in the observed data in exchange for being free of assumptions about the multivariate margins. We apply the proposed Bayesian inference procedure to Brazilian climate data and monthly stock returns from the materials and communications market sectors.

To integrate large systems of nonlinear differential equations in time, we consider a variant of nonlinear waveform relaxation (also known as dynamic iteration or Picard-Lindel\"of iteration), where at each iteration a linear inhomogeneous system of differential equations has to be solved. This is done by the exponential block Krylov subspace (EBK) method. Thus, we have an inner-outer iterative method, where iterative approximations are determined over a certain time interval, with no time stepping involved. This approach has recently been shown to be efficient as a time-parallel integrator within the PARAEXP framework. In this paper, convergence behavior of this method is assessed theoretically and practically. We examine efficiency of the method by testing it on nonlinear Burgers, three-dimensional Liouville-Bratu-Gelfand, and three-dimensional nonlinear heat conduction equations and comparing its performance with that of conventional time-stepping integrators.

This paper studies a quantum simulation technique for solving the Fokker-Planck equation. Traditional semi-discretization methods often fail to preserve the underlying Hamiltonian dynamics and may even modify the Hamiltonian structure, particularly when incorporating boundary conditions. We address this challenge by employing the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations. We explore the application in two distinct forms of the Fokker-Planck equation. For the conservation form, we show that the semi-discretization-based Schrodingerization is preferable, especially when dealing with non-periodic boundary conditions. Additionally, we analyze the Schrodingerization approach for unstable systems that possess positive eigenvalues in the real part of the coefficient matrix or differential operator. Our analysis reveals that the direct use of Schrodingerization has the same effect as a stabilization procedure. For the heat equation form, we propose a quantum simulation procedure based on the time-splitting technique. We discuss the relationship between operator splitting in the Schrodingerization method and its application directly to the original problem, illustrating how the Schrodingerization method accurately reproduces the time-splitting solutions at each step. Furthermore, we explore finite difference discretizations of the heat equation form using shift operators. Utilizing Fourier bases, we diagonalize the shift operators, enabling efficient simulation in the frequency space. Providing additional guidance on implementing the diagonal unitary operators, we conduct a comparative analysis between diagonalizations in the Bell and the Fourier bases, and show that the former generally exhibits greater efficiency than the latter.

We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish $L^2$ stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The $L^2$ estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.

The demagnetization field in micromagnetism is given as the gradient of a potential which solves a partial differential equation (PDE) posed in R^d. In its most general form, this PDE is supplied with continuity condition on the boundary of the magnetic domain and the equation includes a discontinuity in the gradient of the potential over the boundary. Typical numerical algorithms to solve this problem relies on the representation of the potential via the Green's function, where a volume and a boundary integral terms need to be accurately approximated. From a computational point of view, the volume integral dominates the computational cost and can be difficult to approximate due to the singularities of the Green's function. In this article, we propose a hybrid model, where the overall potential can be approximated by solving two uncoupled PDEs posed in bounded domains, whereby the boundary conditions of one of the PDEs is obtained by a low cost boundary integral. Moreover, we provide a convergence analysis of the method under two separate theoretical settings; periodic magnetisation, and high-frequency magnetisation. Numerical examples are given to verify the convergence rates.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

In this paper, by using $|x|=2\max\{0,x\}-x$, a class of maximum-based iteration methods is established to solve the generalized absolute value equation $Ax-B|x|=b$. Some convergence conditions of the proposed method are presented. By some numerical experiments, the effectiveness and feasibility of the proposed method are confirmed.

北京阿比特科技有限公司