What data or environments to use for training to improve downstream performance is a longstanding and very topical question in reinforcement learning. In particular, Unsupervised Environment Design (UED) methods have gained recent attention as their adaptive curricula promise to enable agents to be robust to in- and out-of-distribution tasks. This work investigates how existing UED methods select training environments, focusing on task prioritisation metrics. Surprisingly, despite methods aiming to maximise regret in theory, the practical approximations do not correlate with regret but with success rate. As a result, a significant portion of an agent's experience comes from environments it has already mastered, offering little to no contribution toward enhancing its abilities. Put differently, current methods fail to predict intuitive measures of ``learnability.'' Specifically, they are unable to consistently identify those scenarios that the agent can sometimes solve, but not always. Based on our analysis, we develop a method that directly trains on scenarios with high learnability. This simple and intuitive approach outperforms existing UED methods in several binary-outcome environments, including the standard domain of Minigrid and a novel setting closely inspired by a real-world robotics problem. We further introduce a new adversarial evaluation procedure for directly measuring robustness, closely mirroring the conditional value at risk (CVaR). We open-source all our code and present visualisations of final policies here: //github.com/amacrutherford/sampling-for-learnability.
As one of the most successful generative models, diffusion models have demonstrated remarkable efficacy in synthesizing high-quality images. These models learn the underlying high-dimensional data distribution in an unsupervised manner. Despite their success, diffusion models are highly data-driven and prone to inheriting the imbalances and biases present in real-world data. Some studies have attempted to address these issues by designing text prompts for known biases or using bias labels to construct unbiased data. While these methods have shown improved results, real-world scenarios often contain various unknown biases, and obtaining bias labels is particularly challenging. In this paper, we emphasize the necessity of mitigating bias in pre-trained diffusion models without relying on auxiliary bias annotations. To tackle this problem, we propose a framework, InvDiff, which aims to learn invariant semantic information for diffusion guidance. Specifically, we propose identifying underlying biases in the training data and designing a novel debiasing training objective. Then, we employ a lightweight trainable module that automatically preserves invariant semantic information and uses it to guide the diffusion model's sampling process toward unbiased outcomes simultaneously. Notably, we only need to learn a small number of parameters in the lightweight learnable module without altering the pre-trained diffusion model. Furthermore, we provide a theoretical guarantee that the implementation of InvDiff is equivalent to reducing the error upper bound of generalization. Extensive experimental results on three publicly available benchmarks demonstrate that InvDiff effectively reduces biases while maintaining the quality of image generation. Our code is available at //github.com/Hundredl/InvDiff.
Network tomography plays a crucial role in network monitoring and management, where network topology serves as the fundamental basis for various tomography tasks including traffic matrix estimation and link performance inference. The topology information, however, can be inferred through end-to-end measurements using various inference algorithms, posing significant security risks to network infrastructure. While existing protection methods attempt to secure topology information by manipulating end-to-end delay measurements, they often require complex computation and sophisticated modification strategies, making real-time protection challenging. Moreover, these delay-based modifications typically render the measurements unusable for network monitoring, even by trusted users, as the manipulated delays distort the actual network performance characteristics. This paper presents a novel privacy-preserving framework that addresses these limitations. Our approach provides efficient topology protection while maintaining the utility of measurements for authorized network monitoring. Through extensive evaluation on both simulated and real-world networks topology, we demonstrate that our framework achieves superior privacy protection compared to existing methods while enabling trusted users to effectively monitor network performance. Our solution offers a practical approach for organizations to protect sensitive topology information without sacrificing their network monitoring capabilities.
With the explosive growth of available training data, single-image 3D human modeling is ahead of a transition to a data-centric paradigm. A key to successfully exploiting data scale is to design flexible models that can be supervised from various heterogeneous data sources produced by different researchers or vendors. To this end, we propose a simple yet powerful paradigm for seamlessly unifying different human pose and shape-related tasks and datasets. Our formulation is centered on the ability -- both at training and test time -- to query any arbitrary point of the human volume, and obtain its estimated location in 3D. We achieve this by learning a continuous neural field of body point localizer functions, each of which is a differently parameterized 3D heatmap-based convolutional point localizer (detector). For generating parametric output, we propose an efficient post-processing step for fitting SMPL-family body models to nonparametric joint and vertex predictions. With this approach, we can naturally exploit differently annotated data sources including mesh, 2D/3D skeleton and dense pose, without having to convert between them, and thereby train large-scale 3D human mesh and skeleton estimation models that considerably outperform the state-of-the-art on several public benchmarks including 3DPW, EMDB, EHF, SSP-3D and AGORA.
Agglomerative models have recently emerged as a powerful approach to training vision foundation models, leveraging multi-teacher distillation from existing models such as CLIP, DINO, and SAM. This strategy enables the efficient creation of robust models, combining the strengths of individual teachers while significantly reducing computational and resource demands. In this paper, we thoroughly analyze state-of-the-art agglomerative models, identifying critical challenges including resolution mode shifts, teacher imbalance, idiosyncratic teacher artifacts, and an excessive number of output tokens. To address these issues, we propose several novel solutions: multi-resolution training, mosaic augmentation, and improved balancing of teacher loss functions. Specifically, in the context of Vision Language Models, we introduce a token compression technique to maintain high-resolution information within a fixed token count. We release our top-performing models, available in multiple scales (-B, -L, -H, and -g), alongside inference code and pretrained weights.
Federated learning enables decentralized model training without sharing raw data, preserving data privacy. However, its vulnerability towards critical security threats, such as gradient inversion and model poisoning by malicious clients, remain unresolved. Existing solutions often address these issues separately, sacrificing either system robustness or model accuracy. This work introduces Tazza, a secure and efficient federated learning framework that simultaneously addresses both challenges. By leveraging the permutation equivariance and invariance properties of neural networks via weight shuffling and shuffled model validation, Tazza enhances resilience against diverse poisoning attacks, while ensuring data confidentiality and high model accuracy. Comprehensive evaluations on various datasets and embedded platforms show that Tazza achieves robust defense with up to 6.7x improved computational efficiency compared to alternative schemes, without compromising performance.
We introduce a new sequential transformer reinforcement learning architecture RLT4Rec and demonstrate that it achieves excellent performance in a range of item recommendation tasks. RLT4Rec uses a relatively simple transformer architecture that takes as input the user's (item,rating) history and outputs the next item to present to the user. Unlike existing RL approaches, there is no need to input a state observation or estimate. RLT4Rec handles new users and established users within the same consistent framework and automatically balances the "exploration" needed to discover the preferences of a new user with the "exploitation" that is more appropriate for established users. Training of RLT4Rec is robust and fast and is insensitive to the choice of training data, learning to generate "good" personalised sequences that the user tends to rate highly even when trained on "bad" data.
With the increased attention to model efficiency, post-training sparsity (PTS) has become more and more prevalent because of its effectiveness and efficiency. However, there remain questions on better practice of PTS algorithms and the sparsification ability of models, which hinders the further development of this area. Therefore, a benchmark to comprehensively investigate the issues above is urgently needed. In this paper, we propose the first comprehensive post-training sparsity benchmark called PTSBench towards algorithms and models. We benchmark 10+ PTS general-pluggable fine-grained techniques on 3 typical tasks using over 40 off-the-shelf model architectures. Through extensive experiments and analyses, we obtain valuable conclusions and provide several insights from both algorithms and model aspects. Our PTSBench can provide (1) new observations for a better understanding of the PTS algorithms, (2) in-depth and comprehensive evaluations for the sparsification ability of models, and (3) a well-structured and easy-integrate open-source framework. We hope this work will provide illuminating conclusions and advice for future studies of post-training sparsity methods and sparsification-friendly model design. The code for our PTSBench is released at \href{//github.com/ModelTC/msbench}{//github.com/ModelTC/msbench}.
Indexing is an important step towards strong performance in retrieval-augmented generation (RAG) systems. However, existing methods organize data based on either semantic similarity (similarity) or related information (relatedness), but do not cover both perspectives comprehensively. Our analysis reveals that modeling only one perspective results in insufficient knowledge synthesis, leading to suboptimal performance on complex tasks requiring multihop reasoning. In this paper, we propose SiReRAG, a novel RAG indexing approach that explicitly considers both similar and related information. On the similarity side, we follow existing work and explore some variances to construct a similarity tree based on recursive summarization. On the relatedness side, SiReRAG extracts propositions and entities from texts, groups propositions via shared entities, and generates recursive summaries to construct a relatedness tree. We index and flatten both similarity and relatedness trees into a unified retrieval pool. Our experiments demonstrate that SiReRAG consistently outperforms state-of-the-art indexing methods on three multihop datasets (MuSiQue, 2WikiMultiHopQA, and HotpotQA), with an average 1.9% improvement in F1 scores. As a reasonably efficient solution, SiReRAG enhances existing reranking methods significantly, with up to 7.8% improvement in average F1 scores.
Evaluating a soccer player's performance can be challenging due to the high costs and small margins involved in recruitment decisions. Raw observational statistics further complicate an accurate individual skill assessment as they do not abstract from the potentially confounding factor of team strength. We introduce the Soccer Factor Model (SFM), which corrects this bias by isolating a player's true skill from the team's influence. We compile a novel data set, web-scraped from publicly available data sources. Our empirical application draws on information of 144 players, playing a total of over 33,000 matches, in seasons 2000/01 through 2023/24. Not only does the SFM allow for a structural interpretation of a player's skill, but also stands out against more reduced-form benchmarks in terms of forecast accuracy. Moreover, we propose Skill- and Performance Above Replacement as metrics for fair cross-player comparisons. These, for example, allow us to settle the discussion about the GOAT of soccer in the first quarter of the twenty-first century.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.