亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose Deep Dict, a deep learning-based lossy time series compressor designed to achieve a high compression ratio while maintaining decompression error within a predefined range. Deep Dict incorporates two essential components: the Bernoulli transformer autoencoder (BTAE) and a distortion constraint. BTAE extracts Bernoulli representations from time series data, reducing the size of the representations compared to conventional autoencoders. The distortion constraint limits the prediction error of BTAE to the desired range. Moreover, in order to address the limitations of common regression losses such as L1/L2, we introduce a novel loss function called quantized entropy loss (QEL). QEL takes into account the specific characteristics of the problem, enhancing robustness to outliers and alleviating optimization challenges. Our evaluation of Deep Dict across ten diverse time series datasets from various domains reveals that Deep Dict outperforms state-of-the-art lossy compressors in terms of compression ratio by a significant margin by up to 53.66%.

相關內容

There is a recent trend in the LiDAR perception field towards unifying multiple tasks in a single strong network with improved performance, as opposed to using separate networks for each task. In this paper, we introduce a new LiDAR multi-task learning paradigm based on the transformer. The proposed LiDARFormer utilizes cross-space global contextual feature information and exploits cross-task synergy to boost the performance of LiDAR perception tasks across multiple large-scale datasets and benchmarks. Our novel transformer-based framework includes a cross-space transformer module that learns attentive features between the 2D dense Bird's Eye View (BEV) and 3D sparse voxel feature maps. Additionally, we propose a transformer decoder for the segmentation task to dynamically adjust the learned features by leveraging the categorical feature representations. Furthermore, we combine the segmentation and detection features in a shared transformer decoder with cross-task attention layers to enhance and integrate the object-level and class-level features. LiDARFormer is evaluated on the large-scale nuScenes and the Waymo Open datasets for both 3D detection and semantic segmentation tasks, and it outperforms all previously published methods on both tasks. Notably, LiDARFormer achieves the state-of-the-art performance of 76.4% L2 mAPH and 74.3% NDS on the challenging Waymo and nuScenes detection benchmarks for a single model LiDAR-only method.

Trajectory prediction plays a crucial role in the autonomous driving stack by enabling autonomous vehicles to anticipate the motion of surrounding agents. Goal-based prediction models have gained traction in recent years for addressing the multimodal nature of future trajectories. Goal-based prediction models simplify multimodal prediction by first predicting 2D goal locations of agents and then predicting trajectories conditioned on each goal. However, a single 2D goal location serves as a weak inductive bias for predicting the whole trajectory, often leading to poor map compliance, i.e., part of the trajectory going off-road or breaking traffic rules. In this paper, we improve upon goal-based prediction by proposing the Path-based prediction (PBP) approach. PBP predicts a discrete probability distribution over reference paths in the HD map using the path features and predicts trajectories in the path-relative Frenet frame. We applied the PBP trajectory decoder on top of the HiVT scene encoder and report results on the Argoverse dataset. Our experiments show that PBP achieves competitive performance on the standard trajectory prediction metrics, while significantly outperforming state-of-the-art baselines in terms of map compliance.

We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, CyberDemo outperforms traditional in-domain real-world demonstrations when transferred to the real world, handling diverse physical and visual conditions. Regardless of its affordability and convenience in data collection, CyberDemo outperforms baseline methods in terms of success rates across various tasks and exhibits generalizability with previously unseen objects. For example, it can rotate novel tetra-valve and penta-valve, despite human demonstrations only involving tri-valves. Our research demonstrates the significant potential of simulated human demonstrations for real-world dexterous manipulation tasks. More details can be found at //cyber-demo.github.io

In this paper, we present CaveSeg - the first visual learning pipeline for semantic segmentation and scene parsing for AUV navigation inside underwater caves. We address the problem of scarce annotated training data by preparing a comprehensive dataset for semantic segmentation of underwater cave scenes. It contains pixel annotations for important navigation markers (e.g. caveline, arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and open areas for servoing. Through comprehensive benchmark analyses on cave systems in USA, Mexico, and Spain locations, we demonstrate that robust deep visual models can be developed based on CaveSeg for fast semantic scene parsing of underwater cave environments. In particular, we formulate a novel transformer-based model that is computationally light and offers near real-time execution in addition to achieving state-of-the-art performance. Finally, we explore the design choices and implications of semantic segmentation for visual servoing by AUVs inside underwater caves. The proposed model and benchmark dataset open up promising opportunities for future research in autonomous underwater cave exploration and mapping.

For potential quantum advantage, Variational Quantum Algorithms (VQAs) need high accuracy beyond the capability of today's NISQ devices, and thus will benefit from error mitigation. In this work we are interested in mitigating measurement errors which occur during qubit measurements after circuit execution and tend to be the most error-prone operations, especially detrimental to VQAs. Prior work, JigSaw, has shown that measuring only small subsets of circuit qubits at a time and collecting results across all such subset circuits can reduce measurement errors. Then, running the entire (global) original circuit and extracting the qubit-qubit measurement correlations can be used in conjunction with the subsets to construct a high-fidelity output distribution of the original circuit. Unfortunately, the execution cost of JigSaw scales polynomially in the number of qubits in the circuit, and when compounded by the number of circuits and iterations in VQAs, the resulting execution cost quickly turns insurmountable. To combat this, we propose VarSaw, which improves JigSaw in an application-tailored manner, by identifying considerable redundancy in the JigSaw approach for VQAs: spatial redundancy across subsets from different VQA circuits and temporal redundancy across globals from different VQA iterations. VarSaw then eliminates these forms of redundancy by commuting the subset circuits and selectively executing the global circuits, reducing computational cost (in terms of the number of circuits executed) over naive JigSaw for VQA by 25x on average and up to 1000x, for the same VQA accuracy. Further, it can recover, on average, 45% of the infidelity from measurement errors in the noisy VQA baseline. Finally, it improves fidelity by 55%, on average, over JigSaw for a fixed computational budget. VarSaw can be accessed here: //github.com/siddharthdangwal/VarSaw.

Despite the promising future of autonomous robots, several key issues currently remain that can lead to compromised performance and safety. One such issue is latency, where we find that even the latest embedded platforms from NVIDIA fail to execute intelligence tasks (e.g., object detection) of autonomous vehicles in a real-time fashion. One remedy to this problem is the promising paradigm of edge computing. Through collaboration with our industry partner, we identify key prohibitive limitations of the current edge mindset: (1) servers are not distributed enough and thus, are not close enough to vehicles, (2) current proposed edge solutions do not provide substantially better performance and extra information specific to autonomous vehicles to warrant their cost to the user, and (3) the state-of-the-art solutions are not compatible with popular frameworks used in autonomous systems, particularly the Robot Operating System (ROS). To remedy these issues, we provide Genie, an encapsulation technique that can enable transparent caching in ROS in a non-intrusive way (i.e., without modifying the source code), can build the cache in a distributed manner (in contrast to traditional central caching methods), and can construct a collective three-dimensional object map to provide substantially better latency (even on low-power edge servers) and higher quality data to all vehicles in a certain locality. We fully implement our design on state-of-the-art industry-adopted embedded and edge platforms, using the prominent autonomous driving software Autoware, and find that Genie can enhance the latency of Autoware Vision Detector by 82% on average, enable object reusability 31% of the time on average and as much as 67% for the incoming requests, and boost the confidence in its object map considerably over time.

The goal of Universal Cross-Domain Retrieval (UCDR) is to achieve robust performance in generalized test scenarios, wherein data may belong to strictly unknown domains and categories during training. Recently, pre-trained models with prompt tuning have shown strong generalization capabilities and attained noteworthy achievements in various downstream tasks, such as few-shot learning and video-text retrieval. However, applying them directly to UCDR may not sufficiently to handle both domain shift (i.e., adapting to unfamiliar domains) and semantic shift (i.e., transferring to unknown categories). To this end, we propose \textbf{Pro}mpting-to-\textbf{S}imulate (ProS), the first method to apply prompt tuning for UCDR. ProS employs a two-step process to simulate Content-aware Dynamic Prompts (CaDP) which can impact models to produce generalized features for UCDR. Concretely, in Prompt Units Learning stage, we introduce two Prompt Units to individually capture domain and semantic knowledge in a mask-and-align way. Then, in Context-aware Simulator Learning stage, we train a Content-aware Prompt Simulator under a simulated test scenarios to produce the corresponding CaDP. Extensive experiments conducted on three benchmark datasets show that our method achieves new state-of-the-art performance without bringing excessive parameters. Our method is publicly available at //github.com/fangkaipeng/ProS.

Latest gaze estimation methods require large-scale training data but their collection and exchange pose significant privacy risks. We propose PrivatEyes - the first privacy-enhancing training approach for appearance-based gaze estimation based on federated learning (FL) and secure multi-party computation (MPC). PrivatEyes enables training gaze estimators on multiple local datasets across different users and server-based secure aggregation of the individual estimators' updates. PrivatEyes guarantees that individual gaze data remains private even if a majority of the aggregating servers is malicious. We also introduce a new data leakage attack DualView that shows that PrivatEyes limits the leakage of private training data more effectively than previous approaches. Evaluations on the MPIIGaze, MPIIFaceGaze, GazeCapture, and NVGaze datasets further show that the improved privacy does not lead to a lower gaze estimation accuracy or substantially higher computational costs - both of which are on par with its non-secure counterparts.

Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司