Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at //sites.google.com/view/fightladder/home.
Deep learning and signal processing are closely correlated in many IoT scenarios such as anomaly detection to empower intelligence of things. Many IoT processors utilize digital signal processors (DSPs) for signal processing and build deep learning frameworks on this basis. While deep learning is usually much more computing-intensive than signal processing, the computing efficiency of deep learning on DSPs is limited due to the lack of native hardware support. In this case, we present a contrary strategy and propose to enable signal processing on top of a classical deep learning accelerator (DLA). With the observation that irregular data patterns such as butterfly operations in FFT are the major barrier that hinders the deployment of signal processing on DLAs, we propose a programmable data shuffling fabric and have it inserted between the input buffer and computing array of DLAs such that the irregular data is reorganized and the processing is converted to be regular. With the online data shuffling, the proposed architecture, SigDLA, can adapt to various signal processing tasks without affecting the deep learning processing. Moreover, we build a reconfigurable computing array to suit the various data width requirements of both signal processing and deep learning. According to our experiments, SigDLA achieves an average performance speedup of 4.4$\times$, 1.4$\times$, and 1.52$\times$, and average energy reduction of 4.82$\times$, 3.27$\times$, and 2.15$\times$ compared to an embedded ARM processor with customized DSP instructions, a DSP processor, and an independent DSP-DLA architecture respectively with 17% more chip area over the original DLAs.
Modern reinforcement learning (RL) struggles to capture real-world cause-and-effect dynamics, leading to inefficient exploration due to extensive trial-and-error actions. While recent efforts to improve agent exploration have leveraged causal discovery, they often make unrealistic assumptions of causal variables in the environments. In this paper, we introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL), incorporating causal relationships to drive exploration in RL without specifying environmental causal variables. Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms. Subsequently, it constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion. This can be leveraged to generate intrinsic rewards or establish a hierarchy of subgoals to enhance exploration efficiency. Experimental results showcase a significant improvement in agent performance in grid-world, 2d games and robotic domains, particularly in scenarios with sparse rewards and noisy actions, such as the notorious Noisy-TV environments.
In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at //github.com/ltlhuuu/A2PR.
Trajectory length stands as a crucial hyperparameter within reinforcement learning (RL) algorithms, significantly contributing to the sample inefficiency in robotics applications. Motivated by the pivotal role trajectory length plays in the training process, we introduce Ada-NAV, a novel adaptive trajectory length scheme designed to enhance the training sample efficiency of RL algorithms in robotic navigation tasks. Unlike traditional approaches that treat trajectory length as a fixed hyperparameter, we propose to dynamically adjust it based on the entropy of the underlying navigation policy. Interestingly, Ada-NAV can be applied to both existing on-policy and off-policy RL methods, which we demonstrate by empirically validating its efficacy on three popular RL methods: REINFORCE, Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC). We demonstrate through simulated and real-world robotic experiments that Ada-NAV outperforms conventional methods that employ constant or randomly sampled trajectory lengths. Specifically, for a fixed sample budget, Ada-NAV achieves an 18\% increase in navigation success rate, a 20-38\% reduction in navigation path length, and a 9.32\% decrease in elevation costs. Furthermore, we showcase the versatility of Ada-NAV by integrating it with the Clearpath Husky robot, illustrating its applicability in complex outdoor environments.
Programmers frequently engage with machine learning tutorials in computational notebooks and have been adopting code generation technologies based on large language models (LLMs). However, they encounter difficulties in understanding and working with code produced by LLMs. To mitigate these challenges, we introduce a novel workflow into computational notebooks that augments LLM-based code generation with an additional ephemeral UI step, offering users UI scaffolds as an intermediate stage between user prompts and code generation. We present this workflow in BISCUIT, an extension for JupyterLab that provides users with ephemeral UIs generated by LLMs based on the context of their code and intentions, scaffolding users to understand, guide, and explore with LLM-generated code. Through a user study where 10 novices used BISCUIT for machine learning tutorials, we found that BISCUIT offers users representations of code to aid their understanding, reduces the complexity of prompt engineering, and creates a playground for users to explore different variables and iterate on their ideas.
Code Language Models (CLMs), particularly those leveraging deep learning, have achieved significant success in code intelligence domain. However, the issue of security, particularly backdoor attacks, is often overlooked in this process. The previous research has focused on designing backdoor attacks for CLMs, but effective defenses have not been adequately addressed. In particular, existing defense methods from natural language processing, when directly applied to CLMs, are not effective enough and lack generality, working well in some models and scenarios but failing in others, thus fall short in consistently mitigating backdoor attacks. To bridge this gap, we first confirm the phenomenon of ``early learning" as a general occurrence during the training of CLMs. This phenomenon refers to that a model initially focuses on the main features of training data but may become more sensitive to backdoor triggers over time, leading to overfitting and susceptibility to backdoor attacks. We then analyze that overfitting to backdoor triggers results from the use of the cross-entropy loss function, where the unboundedness of cross-entropy leads the model to increasingly concentrate on the features of the poisoned data. Based on this insight, we propose a general and effective loss function DeCE (Deceptive Cross-Entropy) by blending deceptive distributions and applying label smoothing to limit the gradient to be bounded, which prevents the model from overfitting to backdoor triggers and then enhances the security of CLMs against backdoor attacks. To verify the effectiveness of our defense method, we select code synthesis tasks as our experimental scenarios. Our experiments across various code synthesis datasets, models, and poisoning ratios demonstrate the applicability and effectiveness of DeCE in enhancing the security of CLMs.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.