亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the investment industry, it is often essential to carry out fine-grained company similarity quantification for a range of purposes, including market mapping, competitor analysis, and mergers and acquisitions. We propose and publish a knowledge graph, named CompanyKG, to represent and learn diverse company features and relations. Specifically, 1.17 million companies are represented as nodes enriched with company description embeddings; and 15 different inter-company relations result in 51.06 million weighted edges. To enable a comprehensive assessment of methods for company similarity quantification, we have devised and compiled three evaluation tasks with annotated test sets: similarity prediction, competitor retrieval and similarity ranking. We present extensive benchmarking results for 11 reproducible predictive methods categorized into three groups: node-only, edge-only, and node+edge. To the best of our knowledge, CompanyKG is the first large-scale heterogeneous graph dataset originating from a real-world investment platform, tailored for quantifying inter-company similarity.

相關內容

Developing robotic intelligent systems that can adapt quickly to unseen wild situations is one of the critical challenges in pursuing autonomous robotics. Although some impressive progress has been made in walking stability and skill learning in the field of legged robots, their ability to fast adaptation is still inferior to that of animals in nature. Animals are born with massive skills needed to survive, and can quickly acquire new ones, by composing fundamental skills with limited experience. Inspired by this, we propose a novel framework, named Robot Skill Graph (RSG) for organizing massive fundamental skills of robots and dexterously reusing them for fast adaptation. Bearing a structure similar to the Knowledge Graph (KG), RSG is composed of massive dynamic behavioral skills instead of static knowledge in KG and enables discovering implicit relations that exist in be-tween of learning context and acquired skills of robots, serving as a starting point for understanding subtle patterns existing in robots' skill learning. Extensive experimental results demonstrate that RSG can provide rational skill inference upon new tasks and environments and enable quadruped robots to adapt to new scenarios and learn new skills rapidly.

Deep learning-based models are at the forefront of most driver observation benchmarks due to their remarkable accuracies but are also associated with high computational costs. This is challenging, as resources are often limited in real-world driving scenarios. This paper introduces a lightweight framework for resource-efficient driver activity recognition. The framework enhances 3D MobileNet, a neural architecture optimized for speed in video classification, by incorporating knowledge distillation and model quantization to balance model accuracy and computational efficiency. Knowledge distillation helps maintain accuracy while reducing the model size by leveraging soft labels from a larger teacher model (I3D), instead of relying solely on original ground truth data. Model quantization significantly lowers memory and computation demands by using lower precision integers for model weights and activations. Extensive testing on a public dataset for in-vehicle monitoring during autonomous driving demonstrates that this new framework achieves a threefold reduction in model size and a 1.4-fold improvement in inference time, compared to an already optimized architecture. The code for this study is available at //github.com/calvintanama/qd-driver-activity-reco.

Recent research indicates that frequent model communication stands as a major bottleneck to the efficiency of decentralized machine learning (ML), particularly for large-scale and over-parameterized neural networks (NNs). In this paper, we introduce MALCOM-PSGD, a new decentralized ML algorithm that strategically integrates gradient compression techniques with model sparsification. MALCOM-PSGD leverages proximal stochastic gradient descent to handle the non-smoothness resulting from the $\ell_1$ regularization in model sparsification. Furthermore, we adapt vector source coding and dithering-based quantization for compressed gradient communication of sparsified models. Our analysis shows that decentralized proximal stochastic gradient descent with compressed communication has a convergence rate of $\mathcal{O}\left(\ln(t)/\sqrt{t}\right)$ assuming a diminishing learning rate and where $t$ denotes the number of iterations. Numerical results verify our theoretical findings and demonstrate that our method reduces communication costs by approximately $75\%$ when compared to the state-of-the-art method.

Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at //github.com/Spico197/Mirror .

The widespread adoption of commercial autonomous vehicles (AVs) and advanced driver assistance systems (ADAS) may largely depend on their acceptance by society, for which their perceived trustworthiness and interpretability to riders are crucial. In general, this task is challenging because modern autonomous systems software relies heavily on black-box artificial intelligence models. Towards this goal, this paper introduces a novel dataset, Rank2Tell, a multi-modal ego-centric dataset for Ranking the importance level and Telling the reason for the importance. Using various close and open-ended visual question answering, the dataset provides dense annotations of various semantic, spatial, temporal, and relational attributes of various important objects in complex traffic scenarios. The dense annotations and unique attributes of the dataset make it a valuable resource for researchers working on visual scene understanding and related fields. Furthermore, we introduce a joint model for joint importance level ranking and natural language captions generation to benchmark our dataset and demonstrate performance with quantitative evaluations.

In recent years, there has been a rapid development of spatio-temporal prediction techniques in response to the increasing demands of traffic management and travel planning. While advanced end-to-end models have achieved notable success in improving predictive performance, their integration and expansion pose significant challenges. This work aims to address these challenges by introducing a spatio-temporal pre-training framework that seamlessly integrates with downstream baselines and enhances their performance. The framework is built upon two key designs: (i) We propose a spatio-temporal mask autoencoder as a pre-training model for learning spatio-temporal dependencies. The model incorporates customized parameter learners and hierarchical spatial pattern encoding networks. These modules are specifically designed to capture spatio-temporal customized representations and intra- and inter-cluster region semantic relationships, which have often been neglected in existing approaches. (ii) We introduce an adaptive mask strategy as part of the pre-training mechanism. This strategy guides the mask autoencoder in learning robust spatio-temporal representations and facilitates the modeling of different relationships, ranging from intra-cluster to inter-cluster, in an easy-to-hard training manner. Extensive experiments conducted on representative benchmarks demonstrate the effectiveness of our proposed method. We have made our model implementation publicly available at //github.com/HKUDS/GPT-ST.

Time series forecasting is widely used in business intelligence, e.g., forecast stock market price, sales, and help the analysis of data trend. Most time series of interest are macroscopic time series that are aggregated from microscopic data. However, instead of directly modeling the macroscopic time series, rare literature studied the forecasting of macroscopic time series by leveraging data on the microscopic level. In this paper, we assume that the microscopic time series follow some unknown mixture probabilistic distributions. We theoretically show that as we identify the ground truth latent mixture components, the estimation of time series from each component could be improved because of lower variance, thus benefitting the estimation of macroscopic time series as well. Inspired by the power of Seq2seq and its variants on the modeling of time series data, we propose Mixture of Seq2seq (MixSeq), an end2end mixture model to cluster microscopic time series, where all the components come from a family of Seq2seq models parameterized by different parameters. Extensive experiments on both synthetic and real-world data show the superiority of our approach.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司