亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ambient lighting conditions play a crucial role in determining the perceptual quality of images from photographic devices. In general, inadequate transmission light and undesired atmospheric conditions jointly degrade the image quality. If we know the desired ambient factors associated with the given low-light image, we can recover the enhanced image easily \cite{b1}. Typical deep networks perform enhancement mappings without investigating the light distribution and color formulation properties. This leads to a lack of image instance-adaptive performance in practice. On the other hand, physical model-driven schemes suffer from the need for inherent decompositions and multiple objective minimizations. Moreover, the above approaches are rarely data efficient or free of postprediction tuning. Influenced by the above issues, this study presents a semisupervised training method using no-reference image quality metrics for low-light image restoration. We incorporate the classical haze distribution model \cite{b2} to explore the physical properties of the given image in order to learn the effect of atmospheric components and minimize a single objective for restoration. We validate the performance of our network for six widely used low-light datasets. The experiments show that the proposed study achieves state-of-the-art or comparable performance.

相關內容

Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input, has recently received considerable attention with regard to its tremendous application potentials. Although deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets, they ignore the relationship between L1- and perceptual- minimization and roughly adopt auxiliary large-scale datasets for pre-training. In this paper, we discuss the image types within a corrupted image and the property of perceptual- and Euclidean- based evaluation protocols. Then we propose a method, Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1- based cooperative learning. Moreover, a noise-guidance data collection strategy is developed to address the training time consumption in multiple datasets optimization. When an auxiliary dataset is incorporated, RWSR-EDL achieves promising results and repulses any training time increment by adopting the noise-guidance data collection strategy. Extensive experiments show that RWSR-EDL achieves competitive performance over state-of-the-art methods on four in-the-wild image super-resolution datasets.

Due to the importance of the lower bounding distances and the attractiveness of symbolic representations, the family of symbolic aggregate approximations (SAX) has been used extensively for encoding time series data. However, typical SAX-based methods rely on two restrictive assumptions; the Gaussian distribution and equiprobable symbols. This paper proposes two novel data-driven SAX-based symbolic representations, distinguished by their discretization steps. The first representation, oriented for general data compaction and indexing scenarios, is based on the combination of kernel density estimation and Lloyd-Max quantization to minimize the information loss and mean squared error in the discretization step. The second method, oriented for high-level mining tasks, employs the Mean-Shift clustering method and is shown to enhance anomaly detection in the lower-dimensional space. Besides, we verify on a theoretical basis a previously observed phenomenon of the intrinsic process that results in a lower than the expected variance of the intermediate piecewise aggregate approximation. This phenomenon causes an additional information loss but can be avoided with a simple modification. The proposed representations possess all the attractive properties of the conventional SAX method. Furthermore, experimental evaluation on real-world datasets demonstrates their superiority compared to the traditional SAX and an alternative data-driven SAX variant.

Exploratory factor analysis (EFA) has been widely used to learn the latent structure underlying multivariate data. Rotation and regularised estimation are two classes of methods in EFA that are widely used to find interpretable loading matrices. This paper proposes a new family of oblique rotations based on component-wise $L^p$ loss functions $(0 < p\leq 1)$ that is closely related to an $L^p$ regularised estimator. Model selection and post-selection inference procedures are developed based on the proposed rotation. When the true loading matrix is sparse, the proposed method tends to outperform traditional rotation and regularised estimation methods, in terms of statistical accuracy and computational cost. Since the proposed loss functions are non-smooth, an iteratively reweighted gradient projection algorithm is developed for solving the optimisation problem. Theoretical results are developed that establish the statistical consistency of the estimation, model selection, and post-selection inference. The proposed method is evaluated and compared with regularised estimation and traditional rotation methods via simulation studies. It is further illustrated by an application to big-five personality assessment.

The availability of massive image databases resulted in the development of scalable machine learning methods such as convolutional neural network (CNNs) filtering and processing these data. While the very recent theoretical work on CNNs focuses on standard nonparametric denoising problems, the variability in image classification datasets does, however, not originate from additive noise but from variation of the shape and other characteristics of the same object across different images. To address this problem, we consider a simple supervised classification problem for object detection on grayscale images. While from the function estimation point of view, every pixel is a variable and large images lead to high-dimensional function recovery tasks suffering from the curse of dimensionality, increasing the number of pixels in our image deformation model enhances the image resolution and makes the object classification problem easier. We propose and theoretically analyze two different procedures. The first method estimates the image deformation by support alignment. Under a minimal separation condition, it is shown that perfect classification is possible. The second method fits a CNN to the data. We derive a rate for the misclassification error depending on the sample size and the number of pixels. Both classifiers are empirically compared on images generated from the MNIST handwritten digit database. The obtained results corroborate the theoretical findings.

This paper presents a multi-scale method for convection-dominated diffusion problems in the regime of large P\'eclet numbers. The application of the solution operator to piecewise constant right-hand sides on some arbitrary coarse mesh defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the $L^2$-norm, the Galerkin projection onto this generalized finite element space even yields $\varepsilon$-independent error bounds, $\varepsilon$ being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a-posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate $\varepsilon$-independent convergence without preasymptotic effects even in the under-resolved regime of large mesh P\'eclet numbers.

Estimation and inference on causal parameters is typically reduced to a generalized method of moments problem, which involves auxiliary functions that correspond to solutions to a regression or classification problem. Recent line of work on debiased machine learning shows how one can use generic machine learning estimators for these auxiliary problems, while maintaining asymptotic normality and root-$n$ consistency of the target parameter of interest, while only requiring mean-squared-error guarantees from the auxiliary estimation algorithms. The literature typically requires that these auxiliary problems are fitted on a separate sample or in a cross-fitting manner. We show that when these auxiliary estimation algorithms satisfy natural leave-one-out stability properties, then sample splitting is not required. This allows for sample re-use, which can be beneficial in moderately sized sample regimes. For instance, we show that the stability properties that we propose are satisfied for ensemble bagged estimators, built via sub-sampling without replacement, a popular technique in machine learning practice.

Human perception is routinely assessing the similarity between images, both for decision making and creative thinking. But the underlying cognitive process is not really well understood yet, hence difficult to be mimicked by computer vision systems. State-of-the-art approaches using deep architectures are often based on the comparison of images described as feature vectors learned for image categorization task. As a consequence, such features are powerful to compare semantically related images but not really efficient to compare images visually similar but semantically unrelated. Inspired by previous works on neural features adaptation to psycho-cognitive representations, we focus here on the specific task of learning visual image similarities when analogy matters. We propose to compare different supervised, semi-supervised and self-supervised networks, pre-trained on distinct scales and contents datasets (such as ImageNet-21k, ImageNet-1K or VGGFace2) to conclude which model may be the best to approximate the visual cortex and learn only an adaptation function corresponding to the approximation of the the primate IT cortex through the metric learning framework. Our experiments conducted on the Totally Looks Like image dataset highlight the interest of our method, by increasing the retrieval scores of the best model @1 by 2.25x. This research work was recently accepted for publication at the ICIP 2021 international conference [1]. In this new article, we expand on this previous work by using and comparing new pre-trained feature extractors on other datasets.

Supervised learning methods trained with maximum likelihood objectives often overfit on training data. Most regularizers that prevent overfitting look to increase confidence on additional examples (e.g., data augmentation, adversarial training), or reduce it on training data (e.g., label smoothing). In this work we propose a complementary regularization strategy that reduces confidence on self-generated examples. The method, which we call RCAD (Reducing Confidence along Adversarial Directions), aims to reduce confidence on out-of-distribution examples lying along directions adversarially chosen to increase training loss. In contrast to adversarial training, RCAD does not try to robustify the model to output the original label, but rather regularizes it to have reduced confidence on points generated using much larger perturbations than in conventional adversarial training. RCAD can be easily integrated into training pipelines with a few lines of code. Despite its simplicity, we find on many classification benchmarks that RCAD can be added to existing techniques (e.g., label smoothing, MixUp training) to increase test accuracy by 1-3% in absolute value, with more significant gains in the low data regime. We also provide a theoretical analysis that helps to explain these benefits in simplified settings, showing that RCAD can provably help the model unlearn spurious features in the training data.

Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司