亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern hardware designs have grown increasingly efficient and complex. However, they are often susceptible to Common Weakness Enumerations (CWEs). This paper is focused on the formal verification of CWEs in a dataset of hardware designs written in SystemVerilog from Regenerative Artificial Intelligence (AI) powered by Large Language Models (LLMs). We applied formal verification to categorize each hardware design as vulnerable or CWE-free. This dataset was generated by 4 different LLMs and features a unique set of designs for each of the 10 CWEs we target in our paper. We have associated the identified vulnerabilities with CWE numbers for a dataset of 60,000 generated SystemVerilog Register Transfer Level (RTL) code. It was also found that most LLMs are not aware of any hardware CWEs; hence they are usually not considered when generating the hardware code. Our study reveals that approximately 60% of the hardware designs generated by LLMs are prone to CWEs, posing potential safety and security risks. The dataset could be ideal for training LLMs and Machine Learning (ML) algorithms to abstain from generating CWE-prone hardware designs.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Voice Assistants (VAs) can assist users in various everyday tasks, but many users are reluctant to rely on VAs for intricate tasks like online shopping. This study aims to examine whether the vocal characteristics of VAs can serve as an effective tool to persuade users and increase user engagement with VAs in online shopping. Prior studies have demonstrated that the perceived tone, age, and gender of a voice influence the perceived persuasiveness of the speaker in interpersonal interactions. Furthermore, persuasion in product communication has been shown to affect purchase decisions in online shopping. We investigate whether variations in a VA voice's perceived tone, age, and gender characteristics can persuade users, and ultimately affect their purchase decisions. Our experimental study showed that participants were more persuaded to make purchase decisions by VA voices having positive or neutral tones as well as middle-aged male or younger female voices. Our results suggest that VA designers should offer users the ability to easily customize VA voices with a range of tones, ages, and genders. This customization can enhance user comfort and enjoyment, potentially leading to higher engagement with VAs. Additionally, we discuss the boundaries of ethical persuasion, emphasizing the importance of safeguarding users' interests against unwarranted manipulation.

Purpose: Autonomous navigation of devices in endovascular interventions can decrease operation times, improve decision-making during surgery, and reduce operator radiation exposure while increasing access to treatment. This systematic review explores recent literature to assess the impact, challenges, and opportunities artificial intelligence (AI) has for the autonomous endovascular intervention navigation. Methods: PubMed and IEEEXplore databases were queried. Eligibility criteria included studies investigating the use of AI in enabling the autonomous navigation of catheters/guidewires in endovascular interventions. Following PRISMA, articles were assessed using QUADAS-2. PROSPERO: CRD42023392259. Results: Among 462 studies, fourteen met inclusion criteria. Reinforcement learning (9/14, 64%) and learning from demonstration (7/14, 50%) were used as data-driven models for autonomous navigation. Studies predominantly utilised physical phantoms (10/14, 71%) and in silico (4/14, 29%) models. Experiments within or around the blood vessels of the heart were reported by the majority of studies (10/14, 71%), while simple non-anatomical vessel platforms were used in three studies (3/14, 21%), and the porcine liver venous system in one study. We observed that risk of bias and poor generalisability were present across studies. No procedures were performed on patients in any of the studies reviewed. Studies lacked patient selection criteria, reference standards, and reproducibility, resulting in low clinical evidence levels. Conclusions: AI's potential in autonomous endovascular navigation is promising, but in an experimental proof-of-concept stage, with a technology readiness level of 3. We highlight that reference standards with well-identified performance metrics are crucial to allow for comparisons of data-driven algorithms proposed in the years to come.

Deep reinforcement learning (DRL) is playing an increasingly important role in real-world applications. However, obtaining an optimally performing DRL agent for complex tasks, especially with sparse rewards, remains a significant challenge. The training of a DRL agent can be often trapped in a bottleneck without further progress. In this paper, we propose RICE, an innovative refining scheme for reinforcement learning that incorporates explanation methods to break through the training bottlenecks. The high-level idea of RICE is to construct a new initial state distribution that combines both the default initial states and critical states identified through explanation methods, thereby encouraging the agent to explore from the mixed initial states. Through careful design, we can theoretically guarantee that our refining scheme has a tighter sub-optimality bound. We evaluate RICE in various popular RL environments and real-world applications. The results demonstrate that RICE significantly outperforms existing refining schemes in enhancing agent performance.

Large language models (LLMs) have provided a lot of exciting new capabilities in software development. However, the opaque nature of these models makes them difficult to reason about and inspect. Their opacity gives rise to potential security risks, as adversaries can train and deploy compromised models to disrupt the software development process in the victims' organization. This work presents an overview of the current state-of-the-art trojan attacks on large language models of code, with a focus on triggers -- the main design point of trojans -- with the aid of a novel unifying trigger taxonomy framework. We also aim to provide a uniform definition of the fundamental concepts in the area of trojans in Code LLMs. Finally, we draw implications of findings on how code models learn on trigger design.

Software developers often repeat code changes, known as "code change patterns" (CPATs), within and across projects. Automating these CPATs accelerates development, but current Transformation by Example (TBE) techniques are limited by the input examples' quality and quantity, missing variations with different syntax or flow yet semantically similar. Large Language Models (LLMs), trained on vast code datasets, can overcome these limitations by generating semantically equivalent, unseen CPAT variants, enhancing TBE effectiveness. We identified best practices for using LLMs to generate code variants meeting criteria of correctness, usefulness, and applicability. Implementing these in PyCraft, combining static and dynamic analysis with LLMs, we achieved an F-measure of 96.6% in identifying correct variants, expanding inputs by 58x on average, and automating changes to increase target codes by up to 39x. Patches from PyCraft were submitted to projects like microsoft/DeepSpeed and IBM/inFairness, with an 83% acceptance rate, validating our approach's usefulness.

The emerging Self-Sovereign Identity (SSI) techniques, such as Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), move control of digital identity from conventional identity providers to individuals and lay down the foundation for people, organizations, and things establishing rich digital relationship. The existing applications of SSI mainly focus on creating person-to-person and person-to-service relationships, whereas person-to-device and device-to-device interactions have been largely overlooked. In this paper, we close this gap by identifying a number of key challenges of applying SSI to the Internet of Things (IoT) and providing a comprehensive taxonomy and usage of VCs in the IoT context with respect to their validity period, trust and interoperability level, and scope of usage. The life-cycle management of VCs as well as various optimization techniques for realizing SSI in IoT environments are also addressed in great detail. This work is a noteworthy step towards massive adoption of SSI for securing existing and future IoT applications in practice.

Automatic programming has seen increasing popularity due to the emergence of tools like GitHub Copilot which rely on Large Language Models (LLMs). At the same time, automatically generated code faces challenges during deployment due to concerns around quality and trust. In this article, we study automated coding in a general sense and study the concerns around code quality, security and related issues of programmer responsibility. These are key issues for organizations while deciding on the usage of automatically generated code. We discuss how advances in software engineering such as program repair and analysis can enable automatic programming. We conclude with a forward looking view, focusing on the programming environment of the near future, where programmers may need to switch to different roles to fully utilize the power of automatic programming. Automated repair of automatically generated programs from LLMs, can help produce higher assurance code from LLMs, along with evidence of assurance

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司