亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multimodal Large Language Models (MLLMs) have showcased impressive performance in a variety of multimodal tasks. On the other hand, the integration of additional image modality may allow the malicious users to inject harmful content inside the images for jailbreaking. Unlike text-based LLMs, where adversaries need to select discrete tokens to conceal their malicious intent using specific algorithms, the continuous nature of image signals provides a direct opportunity for adversaries to inject harmful intentions. In this work, we propose $\textbf{BaThe}$ ($\textbf{Ba}$ckdoor $\textbf{T}$rigger S$\textbf{h}$i$\textbf{e}$ld), a simple yet effective jailbreak defense mechanism. Our work is motivated by recent research on jailbreak backdoor attack and virtual prompt backdoor attack in generative language models. Jailbreak backdoor attack uses harmful instructions combined with manually crafted strings as triggers to make the backdoored model generate prohibited responses. We assume that harmful instructions can function as triggers, and if we alternatively set rejection responses as the triggered response, the backdoored model then can defend against jailbreak attacks. We achieve this by utilizing virtual rejection prompt, similar to the virtual prompt backdoor attack. We embed the virtual rejection prompt into the soft text embeddings, which we call ``wedge''. Our comprehensive experiments demonstrate that BaThe effectively mitigates various types of jailbreak attacks and is adaptable to defend against unseen attacks, with minimal impact on MLLMs' performance.

相關內容

Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks. However, these models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images. Many existing work detects hallucination by directly judging whether an object exists in an image, overlooking the association between the object and semantics. To address this issue, we propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD). This framework incorporates hallucination feedback at both object and sentence semantic levels. Remarkably, even with a marginal degree of training, this approach can alleviate over 15% of hallucination. Simultaneously, HELPD penalizes the output logits according to the image attention window to avoid being overly affected by generated text. HELPD can be seamlessly integrated with any LVLMs. Our experiments demonstrate that the proposed framework yields favorable results across multiple hallucination benchmarks. It effectively mitigates hallucination for different LVLMs and concurrently improves their text generation quality.

Guitar Pickups have been in production for nearly 100 years, and the question of how exactly one pickup is tonally superior to another is still subject to a high level of debate. This paper is the first in a set demystifying the production of guitar pickups and introducing a level of scientific procedure to the conversation. Previous studies have analysed commercial off-the-shelf pickups, but these differ from each other in multiple ways. The novelty of this study is that dedicated experimental pickups were created, which vary only one parameter at a time in order to allow scientific study. The most fundamental qualities of a single-coil pickup are investigated: in this paper, number of turns and gauge of wire. A set of single-coil stratocaster-style pickups were created, with the number of turns of wire varied across the commercially available range (5000-12000 turns), and this was done for two widely used wire gauges (42 and 44 AWG). A frequency response analyser was used to obtain impedance across a frequency range. It is shown that resonant frequency decreases exponentially with number of turns, while the magnitude of the resonant peak increases linearly with number of turns. The wire gauge used has a significant impact on both parameters, with the thicker wire giving higher resonant frequencies and higher magnitudes than the thinner wire for the same number of turns. These impact the sound associated with the pickup: the resonant frequency is linked to the perceived tone of the pickup, and the magnitude to the output amplitude and hence 'gain.' Increasing the number of turns will give a higher output pickup with a darker tone, and thicker wire gives louder outputs and brighter tones - consistent with what can be observed in commercial pickups.

The potential for exploitation of AI models has increased due to the rapid advancement of Artificial Intelligence (AI) and the widespread use of platforms like Model Zoo for sharing AI models. Attackers can embed malware within AI models through steganographic techniques, taking advantage of the substantial size of these models to conceal malicious data and use it for nefarious purposes, e.g. Remote Code Execution. Ensuring the security of AI models is a burgeoning area of research essential for safeguarding the multitude of organizations and users relying on AI technologies. This study leverages well-studied image few-shot learning techniques by transferring the AI models to the image field using a novel image representation. Applying few-shot learning in this field enables us to create practical models, a feat that previous works lack. Our method addresses critical limitations in state-of-the-art detection techniques that hinder their practicality. This approach reduces the required training dataset size from 40000 models to just 6. Furthermore, our methods consistently detect delicate attacks of up to 25% embedding rate and even up to 6% in some cases, while previous works were only shown to be effective for a 100%-50% embedding rate. We employ a strict evaluation strategy to ensure the trained models are generic concerning various factors. In addition, we show that our trained models successfully detect novel spread-spectrum steganography attacks, demonstrating the models' impressive robustness just by learning one type of attack. We open-source our code to support reproducibility and enhance the research in this new field.

Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark.

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks but their performance in complex logical reasoning tasks remains unsatisfactory. Although some prompting methods, such as Chain-of-Thought, can improve the reasoning ability of LLMs to some extent, they suffer from an unfaithful issue where derived conclusions may not align with the generated reasoning chain. To address this issue, some studies employ the approach of propositional logic to further enhance logical reasoning abilities of LLMs. However, the potential omissions in the extraction of logical expressions in these methods can cause information loss in the logical reasoning process, thereby generating incorrect results. To this end, we propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context, and utilizes the generated logical information as an additional augmentation to the input prompts, thereby enhancing the capability of logical reasoning. The LoT is orthogonal to existing prompting methods and can be seamlessly integrated with them. Extensive experiments demonstrate that LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks. In particular, the LoT enhances Chain-of-Thought's performance on the ReClor dataset by +4.35%; moreover, it improves Chain-of-Thought with Self-Consistency's performance on LogiQA by +5%; additionally, it boosts performance of Tree-of-Thoughts on ProofWriter dataset by +8%.

Training large Deep Neural Network (DNN) models requires thousands of GPUs over the course of several days or weeks. At this scale, failures are frequent and can have a big impact on training throughput. Utilizing spare GPU servers to mitigate performance loss becomes increasingly costly as model sizes grow. ReCycle is a system designed for efficient DNN training in the presence of failures, without relying on spare servers. It exploits the inherent functional redundancy in distributed training systems -- where servers across data-parallel groups store the same model parameters -- and pipeline schedule bubbles within each data-parallel group. When servers fails, ReCycle dynamically re-routes micro-batches to data-parallel peers, allowing for uninterrupted training despite multiple failures. However, this re-routing can create imbalances across pipeline stages, leading to reduced training throughput. To address this, ReCycle introduces two key optimizations that ensure re-routed micro-batches are processed within the original pipeline schedule's bubbles. First, it decouples the backward pass into two phases: one for computing gradients for the input and another for calculating gradients for the parameters. Second, it avoids synchronization across pipeline stages by staggering the optimizer step. Together, these optimizations enable adaptive pipeline schedules that minimize or even eliminate training throughput degradation during failures. We describe a prototype for ReCycle and show that it achieves high training throughput under multiple failures, outperforming recent proposals for fault-tolerant training such as Oobleck and Bamboo by up to $1.46\times$ and $1.64\times$, respectively.

Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning, particularly in novel domains and complex logical sequences. This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs. Our approach bridges LLM-generated ideas with formal logic verification, employing a custom interpreter to convert LLM outputs into First Order Logic constructs for theorem prover scrutiny. Central to our method is an intermediary JSON-based Domain-Specific Language, which by design balances precise logical structures with intuitive human concepts. This hybrid representation enables both rigorous validation and accessible human comprehension of LLM reasoning processes. Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge, and a flexible architecture that allows for easy extension to various domain-specific applications. We demonstrate Proof of Thought's effectiveness through benchmarking on StrategyQA and a novel multimodal reasoning task, showing improved performance in open-ended scenarios. By providing verifiable and interpretable results, our technique addresses critical needs for AI system accountability and sets a foundation for human-in-the-loop oversight in high-stakes domains.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司