Fall detection is a vital task in health monitoring, as it allows the system to trigger an alert and therefore enabling faster interventions when a person experiences a fall. Although most previous approaches rely on standard RGB video data, such detailed appearance-aware monitoring poses significant privacy concerns. Depth sensors, on the other hand, are better at preserving privacy as they merely capture the distance of objects from the sensor or camera, omitting color and texture information. In this paper, we introduce a privacy-supporting solution that makes the RGB-trained model applicable in depth domain and utilizes depth data at test time for fall detection. To achieve cross-modal fall detection, we present an unsupervised RGB to Depth (RGB2Depth) cross-modal domain adaptation approach that leverages labelled RGB data and unlabelled depth data during training. Our proposed pipeline incorporates an intermediate domain module for feature bridging, modality adversarial loss for modality discrimination, classification loss for pseudo-labeled depth data and labeled source data, triplet loss that considers both source and target domains, and a novel adaptive loss weight adjustment method for improved coordination among various losses. Our approach achieves state-of-the-art results in the unsupervised RGB2Depth domain adaptation task for fall detection. Code is available at //github.com/1015206533/privacy_supporting_fall_detection.
Patient privacy is a major barrier to healthcare AI. For confidentiality reasons, most patient data remains in silo in separate hospitals, preventing the design of data-driven healthcare AI systems that need large volumes of patient data to make effective decisions. A solution to this is collective learning across multiple sites through federated learning with differential privacy. However, literature in this space typically focuses on differentially private statistical estimation and machine learning, which is different from the causal inference-related problems that arise in healthcare. In this work, we take a fresh look at federated learning with a focus on causal inference; specifically, we look at estimating the average treatment effect (ATE), an important task in causal inference for healthcare applications, and provide a federated analytics approach to enable ATE estimation across multiple sites along with differential privacy (DP) guarantees at each site. The main challenge comes from site heterogeneity -- different sites have different sample sizes and privacy budgets. We address this through a class of per-site estimation algorithms that reports the ATE estimate and its variance as a quality measure, and an aggregation algorithm on the server side that minimizes the overall variance of the final ATE estimate. Our experiments on real and synthetic data show that our method reliably aggregates private statistics across sites and provides better privacy-utility tradeoff under site heterogeneity than baselines.
We examine how a human-robot interaction (HRI) system may be designed when input-output data from previous experiments are available. In particular, we consider how to select an optimal impedance in the assistance design for a cooperative manipulation task with a new operator. Due to the variability between individuals, the design parameters that best suit one operator of the robot may not be the best parameters for another one. However, by incorporating historical data using a linear auto-regressive (AR-1) Gaussian process, the search for a new operator's optimal parameters can be accelerated. We lay out a framework for optimizing the human-robot cooperative manipulation that only requires input-output data. We establish how the AR-1 model improves the bound on the regret and numerically simulate a human-robot cooperative manipulation task to show the regret improvement. Further, we show how our approach's input-output nature provides robustness against modeling error through an additional numerical study.
This work proposes a safety-critical local reactive controller that enables the robot to navigate in unknown and cluttered environments. In particular, the trajectory tracking task is formulated as a constrained polynomial optimization problem. Then, safety constraints are imposed on the control variables invoking the notion of polynomial positivity certificates in conjunction with their Sum-of-Squares (SOS) approximation, thereby confining the robot motion inside the locally extracted convex free region. It is noteworthy that, in the process of devising the proposed safety constraints, the geometry of the robot can be approximated using any shape that can be characterized with a set of polynomial functions. The optimization problem is further convexified into a semidefinite program (SDP) leveraging truncated multi-sequences (tms) and moment relaxation, which favorably facilitates the effective use of off-the-shelf conic programming solvers, such that real-time performance is attainable. Various robot navigation tasks are investigated to demonstrate the effectiveness of the proposed approach in terms of safety and tracking performance.
Causal representation learning has emerged as the center of action in causal machine learning research. In particular, multi-domain datasets present a natural opportunity for showcasing the advantages of causal representation learning over standard unsupervised representation learning. While recent works have taken crucial steps towards learning causal representations, they often lack applicability to multi-domain datasets due to over-simplifying assumptions about the data; e.g. each domain comes from a different single-node perfect intervention. In this work, we relax these assumptions and capitalize on the following observation: there often exists a subset of latents whose certain distributional properties (e.g., support, variance) remain stable across domains; this property holds when, for example, each domain comes from a multi-node imperfect intervention. Leveraging this observation, we show that autoencoders that incorporate such invariances can provably identify the stable set of latents from the rest across different settings.
Analytical dexterous grasping synthesis is often driven by grasp quality metrics. However, existing metrics possess many problems, such as being computationally expensive, physically inaccurate, and non-differentiable. Moreover, none of them can facilitate the synthesis of non-force-closure grasps, which account for a significant portion of task-oriented grasping such as lid screwing and button pushing. The main challenge behind all the above drawbacks is the difficulty in modeling the complex Grasp Wrench Space (GWS). In this work, we overcome this challenge by proposing a novel GWS estimator, thus enabling gradient-based task-oriented dexterous grasp synthesis for the first time. Our key contribution is a fast, accurate, and differentiable technique to estimate the GWS boundary with good physical interpretability by parallel sampling and mapping, which does not require iterative optimization. Second, based on our differentiable GWS estimator, we derive a task-oriented energy function to enable gradient-based grasp synthesis and a metric to evaluate non-force-closure grasps. Finally, we improve the previous dexterous grasp synthesis pipeline mainly by a novel technique to make nearest-point calculation differentiable, even on mesh edges and vertices. Extensive experiments are performed to verify the efficiency and effectiveness of our methods. Our GWS estimator can run in several milliseconds on GPUs with minimal memory cost, more than three orders of magnitude faster than the classic discretization-based method. Using this GWS estimator, we synthesize 0.1 million dexterous grasps to show that our pipeline can significantly outperform the SOTA method, even in task-unaware force-closure-grasp synthesis. For task-oriented grasp synthesis, we provide some qualitative results. Our project page is //pku-epic.github.io/TaskDexGrasp/.
Due to the limitations of the robotic sensors, during a robotic manipulation task, the acquisition of the object's state can be unreliable and noisy. Combining an accurate model of multi-body dynamic system with Bayesian filtering methods has been shown to be able to filter out noise from the object's observed states. However, efficiency of these filtering methods suffers from samples that violate the physical constraints, e.g., no penetration constraint. In this paper, we propose a Rao-Blackwellized Particle Filter (RBPF) that samples the contact states and updates the object's poses using Kalman filters. This RBPF also enforces the physical constraints on the samples by solving a quadratic programming problem. By comparing our method with methods that does not consider physical constraints, we show that our proposed RBPF is not only able to estimate the object's states, e.g., poses, more accurately but also able to infer unobserved states, e.g., velocities, with higher precision.
We consider low-latency image transmission over a noisy wireless channel when correlated side information is present only at the receiver side (the Wyner-Ziv scenario). In particular, we are interested in developing practical schemes using a data-driven joint source-channel coding (JSCC) approach, which has been previously shown to outperform conventional separation-based approaches in the practical finite blocklength regimes, and to provide graceful degradation with channel quality. We propose a novel neural network architecture that incorporates the decoder-only side information at multiple stages at the receiver side. Our results demonstrate that the proposed method succeeds in integrating the side information, yielding improved performance at all channel noise levels in terms of the various distortion criteria considered here, especially at low channel signal-to-noise ratios (SNRs) and small bandwidth ratios (BRs). We also provide the source code of the proposed method to enable further research and reproducibility of the results.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.