Deep learning methods have been achieved brilliant results in face recognition. One of the important tasks to improve the performance is to collect and label images as many as possible. However, labeling identities and checking qualities of large image data are difficult task and mistakes cannot be avoided in processing large data. Previous works have been trying to deal with the problem only in training domain, however it can cause much serious problem if the mistakes are in gallery data of face identification. We proposed gallery data sampling methods which are robust to outliers including wrong labeled, low quality, and less-informative images and reduce searching time. The proposed sampling-by-pruning and sampling-by-generating methods significantly improved face identification performance on our 5.4M web image dataset of celebrities. The proposed method achieved 0.0975 in terms of FNIR at FPIR=0.01, while conventional method showed 0.3891. The average number of feature vectors for each individual gallery was reduced to 17.1 from 115.9 and it can provide much faster search. We also made experiments on public datasets and our method achieved 0.1314 and 0.0668 FNIRs at FPIR=0.01 on the CASIA-WebFace and MS1MV2, while the convectional method did 0.5446, and 0.1327, respectively.
Communication overhead is one of the major challenges in Federated Learning(FL). A few classical schemes assume the server can extract the auxiliary information about training data of the participants from the local models to construct a central dummy dataset. The server uses the dummy dataset to finetune aggregated global model to achieve the target test accuracy in fewer communication rounds. In this paper, we summarize the above solutions into a data-based communication-efficient FL framework. The key of the proposed framework is to design an efficient extraction module(EM) which ensures the dummy dataset has a positive effect on finetuning aggregated global model. Different from the existing methods that use generator to design EM, our proposed method, FedINIBoost borrows the idea of gradient match to construct EM. Specifically, FedINIBoost builds a proxy dataset of the real dataset in two steps for each participant at each communication round. Then the server aggregates all the proxy datasets to form a central dummy dataset, which is used to finetune aggregated global model. Extensive experiments verify the superiority of our method compared with the existing classical method, FedAVG, FedProx, Moon and FedFTG. Moreover, FedINIBoost plays a significant role in finetuning the performance of aggregated global model at the initial stage of FL.
Despite significant advancements in existing models, generating text descriptions from structured data input, known as data-to-text generation, remains a challenging task. In this paper, we propose a novel approach that goes beyond traditional one-shot generation methods by introducing a multi-step process consisting of generation, verification, and correction stages. Our approach, VCP(Verification and Correction Prompting), begins with the model generating an initial output. We then proceed to verify the correctness of different aspects of the generated text. The observations from the verification step are converted into a specialized error-indication prompt, which instructs the model to regenerate the output while considering the identified errors. To enhance the model's correction ability, we have developed a carefully designed training procedure. This procedure enables the model to incorporate feedback from the error-indication prompt, resulting in improved output generation. Through experimental results, we demonstrate that our approach effectively reduces slot error rates while maintaining the overall quality of the generated text.
Although data-driven methods usually have noticeable performance on disease diagnosis and treatment, they are suspected of leakage of privacy due to collecting data for model training. Recently, federated learning provides a secure and trustable alternative to collaboratively train model without any exchange of medical data among multiple institutes. Therefore, it has draw much attention due to its natural merit on privacy protection. However, when heterogenous medical data exists between different hospitals, federated learning usually has to face with degradation of performance. In the paper, we propose a new personalized framework of federated learning to handle the problem. It successfully yields personalized models based on awareness of similarity between local data, and achieves better tradeoff between generalization and personalization than existing methods. After that, we further design a differentially sparse regularizer to improve communication efficiency during procedure of model training. Additionally, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly. Furthermore, we collect 5 real medical datasets, including 2 public medical image datasets and 3 private multi-center clinical diagnosis datasets, and evaluate its performance by conducting nodule classification, tumor segmentation, and clinical risk prediction tasks. Comparing with 13 existing related methods, the proposed method successfully achieves the best model performance, and meanwhile up to 60% improvement of communication efficiency. Source code is public, and can be accessed at: //github.com/ApplicationTechnologyOfMedicalBigData/pFedNet-code.
In the context of adversarial robustness, we make three strongly related contributions. First, we prove that while attacking ReLU classifiers is $\mathit{NP}$-hard, ensuring their robustness at training time is $\Sigma^2_P$-hard (even on a single example). This asymmetry provides a rationale for the fact that robust classifications approaches are frequently fooled in the literature. Second, we show that inference-time robustness certificates are not affected by this asymmetry, by introducing a proof-of-concept approach named Counter-Attack (CA). Indeed, CA displays a reversed asymmetry: running the defense is $\mathit{NP}$-hard, while attacking it is $\Sigma_2^P$-hard. Finally, motivated by our previous result, we argue that adversarial attacks can be used in the context of robustness certification, and provide an empirical evaluation of their effectiveness. As a byproduct of this process, we also release UG100, a benchmark dataset for adversarial attacks.
Discretization of the uniform norm of functions from a given finite dimensional subspace of continuous functions is studied. Previous known results show that for any $N$-dimensional subspace of the space of continuous functions it is sufficient to use $e^{CN}$ sample points for an accurate upper bound for the uniform norm by the discrete norm and that one cannot improve on the exponential growth of the number of sampling points for a good discretization theorem in the uniform norm. In this paper we focus on two types of results, which allow us to obtain good discretization of the uniform norm with polynomial in $N$ number of points. In the first way we weaken the discretization inequality by allowing a bound of the uniform norm by the discrete norm multiplied by an extra factor, which may depend on $N$. In the second way we impose restrictions on the finite dimensional subspace under consideration. In particular, we prove a general result, which connects the upper bound on the number of sampling points in the discretization theorem for the uniform norm with the best $m$-term bilinear approximation of the Dirichlet kernel associated with the given subspace.
Binary code similarity detection (BCSD) has various applications, including but not limited to vulnerability detection, plagiarism detection, and malware detection. Previous research efforts mainly focus on transforming binary code to assembly code strings using reverse compilation and then using pre-trained deep learning models with large parameters to obtain feature representation vector of binary code. While these models have proven to be effective in representing binary code, their large parameter size leads to considerable computational expenses during both training and inference. In this paper, we present a lightweight neural network, called FastBCSD, that employs a dynamic instruction vector encoding method and takes only assembly code as input feature to achieve comparable accuracy to the pre-training models while reducing the computational resources and time cost. On the BinaryCorp dataset, our method achieves a similar average MRR score to the state-of-the-art pre-training-based method (jTrans), while on the BinaryCorp 3M dataset, our method even outperforms the latest technology by 0.01. Notably, FastBCSD has a much smaller parameter size (13.4M) compared to jTrans (87.88M), and its latency time is 1/5 of jTrans on NVIDIA GTX 1080Ti.
We consider the problem of online allocation subject to a long-term fairness penalty. Contrary to existing works, however, we do not assume that the decision-maker observes the protected attributes -- which is often unrealistic in practice. Instead they can purchase data that help estimate them from sources of different quality; and hence reduce the fairness penalty at some cost. We model this problem as a multi-armed bandit problem where each arm corresponds to the choice of a data source, coupled with the online allocation problem. We propose an algorithm that jointly solves both problems and show that it has a regret bounded by $\mathcal{O}(\sqrt{T})$. A key difficulty is that the rewards received by selecting a source are correlated by the fairness penalty, which leads to a need for randomization (despite a stochastic setting). Our algorithm takes into account contextual information available before the source selection, and can adapt to many different fairness notions. We also show that in some instances, the estimates used can be learned on the fly.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.
Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.