亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Table Structure Recognition (TSR) aims at transforming unstructured table images into structured formats, such as HTML sequences. One type of popular solution is using detection models to detect components of a table, such as columns and rows, then applying a rule-based post-processing method to convert detection results into HTML sequences. However, existing detection-based studies often have the following limitations. First, these studies usually pay more attention to improving the detection performance, which does not necessarily lead to better performance regarding cell-level metrics, such as TEDS. Second, some solutions over-simplify the problem and can miss some critical information. Lastly, even though some studies defined the problem to detect more components to provide as much information as other types of solutions, these studies ignore the fact this problem definition is a multi-label detection because row, projected row header and column header can share identical bounding boxes. Besides, there is often a performance gap between two-stage and transformer-based detection models regarding the structure-only TEDS, even though they have similar performance regarding the COCO metrics. Therefore, we revisit the limitations of existing detection-based solutions, compare two-stage and transformer-based detection models, and identify the key design aspects for the success of a two-stage detection model for the TSR task, including the multi-class problem definition, the aspect ratio for anchor box generation, and the feature generation of the backbone network. We applied simple methods to improve these aspects of the Cascade R-CNN model, achieved state-of-the-art performance, and improved the baseline Cascade R-CNN model by 19.32%, 11.56% and 14.77% regarding the structure-only TEDS on SciTSR, FinTabNet, and PubTables1M datasets.

相關內容

Video Moment Retrieval (VMR) requires precise modelling of fine-grained moment-text associations to capture intricate visual-language relationships. Due to the lack of a diverse and generalisable VMR dataset to facilitate learning scalable moment-text associations, existing methods resort to joint training on both source and target domain videos for cross-domain applications. Meanwhile, recent developments in vision-language multimodal models pre-trained on large-scale image-text and/or video-text pairs are only based on coarse associations (weakly labelled). They are inadequate to provide fine-grained moment-text correlations required for cross-domain VMR. In this work, we solve the problem of unseen cross-domain VMR, where certain visual and textual concepts do not overlap across domains, by only utilising target domain sentences (text prompts) without accessing their videos. To that end, we explore generative video diffusion for fine-grained editing of source videos controlled by the target sentences, enabling us to simulate target domain videos. We address two problems in video editing for optimising unseen domain VMR: (1) generation of high-quality simulation videos of different moments with subtle distinctions, (2) selection of simulation videos that complement existing source training videos without introducing harmful noise or unnecessary repetitions. On the first problem, we formulate a two-stage video diffusion generation controlled simultaneously by (1) the original video structure of a source video, (2) subject specifics, and (3) a target sentence prompt. This ensures fine-grained variations between video moments. On the second problem, we introduce a hybrid selection mechanism that combines two quantitative metrics for noise filtering and one qualitative metric for leveraging VMR prediction on simulation video selection.

Personalized Federated Learning (PFL) has witnessed remarkable advancements, enabling the development of innovative machine learning applications that preserve the privacy of training data. However, existing theoretical research in this field has primarily focused on distributed optimization for minimization problems. This paper is the first to study PFL for saddle point problems encompassing a broader range of optimization problems, that require more than just solving minimization problems. In this work, we consider a recently proposed PFL setting with the mixing objective function, an approach combining the learning of a global model together with locally distributed learners. Unlike most previous work, which considered only the centralized setting, we work in a more general and decentralized setup that allows us to design and analyze more practical and federated ways to connect devices to the network. We proposed new algorithms to address this problem and provide a theoretical analysis of the smooth (strongly) convex-(strongly) concave saddle point problems in stochastic and deterministic cases. Numerical experiments for bilinear problems and neural networks with adversarial noise demonstrate the effectiveness of the proposed methods.

State of the art Named Entity Recognition (NER) models have achieved an impressive ability to extract common phrases from text that belong to labels such as location, organization, time, and person. However, typical NER systems that rely on having seen a specific entity in their training data in order to label an entity perform poorly on rare or unseen entities ta in order to label an entity perform poorly on rare or unseen entities (Derczynski et al., 2017). This paper attempts to improve recognition of person names, a diverse category that can grow any time someone is born or changes their name. In order for downstream tasks to not exhibit bias based on cultural background, a model should perform well on names from a variety of backgrounds. In this paper I experiment with the training data and input structure of an English Bi-LSTM name recognition model. I look at names from 103 countries to compare how well the model performs on names from different cultures, specifically in the context of a downstream task where extracted names will be matched to information on file. I find that a model with combined character and word input outperforms word-only models and may improve on accuracy compared to classical NER models that are not geared toward identifying unseen entity values.

Interactive Video Object Segmentation (iVOS) is a challenging task that requires real-time human-computer interaction. To improve the user experience, it is important to consider the user's input habits, segmentation quality, running time and memory consumption.However, existing methods compromise user experience with single input mode and slow running speed. Specifically, these methods only allow the user to interact with one single frame, which limits the expression of the user's intent.To overcome these limitations and better align with people's usage habits, we propose a framework that can accept multiple frames simultaneously and explore synergistic interaction across frames (SIAF). Concretely, we designed the Across-Frame Interaction Module that enables users to annotate different objects freely on multiple frames. The AFI module will migrate scribble information among multiple interactive frames and generate multi-frame masks. Additionally, we employ the id-queried mechanism to process multiple objects in batches. Furthermore, for a more efficient propagation and lightweight model, we design a truncated re-propagation strategy to replace the previous multi-round fusion module, which employs an across-round memory that stores important interaction information. Our SwinB-SIAF achieves new state-of-the-art performance on DAVIS 2017 (89.6%, J&F@60). Moreover, our R50-SIAF is more than 3 faster than the state-of-the-art competitor under challenging multi-object scenarios.

Blind Image Quality Assessment (BIQA) aims to evaluate image quality in line with human perception, without reference benchmarks. Currently, deep learning BIQA methods typically depend on using features from high-level tasks for transfer learning. However, the inherent differences between BIQA and these high-level tasks inevitably introduce noise into the quality-aware features. In this paper, we take an initial step towards exploring the diffusion model for feature denoising in BIQA, namely Perceptual Feature Diffusion for IQA (PFD-IQA), which aims to remove noise from quality-aware features. Specifically, (i) We propose a {Perceptual Prior Discovery and Aggregation module to establish two auxiliary tasks to discover potential low-level features in images that are used to aggregate perceptual text conditions for the diffusion model. (ii) We propose a Perceptual Prior-based Feature Refinement strategy, which matches noisy features to predefined denoising trajectories and then performs exact feature denoising based on text conditions. Extensive experiments on eight standard BIQA datasets demonstrate the superior performance to the state-of-the-art BIQA methods, i.e., achieving the PLCC values of 0.935 ( vs. 0.905 in KADID) and 0.922 ( vs. 0.894 in LIVEC).

Model Updating is frequently used in Structural Health Monitoring to determine structures' operating conditions and whether maintenance is required. Data collected by sensors are used to update the values of some initially unknown physics-based model's parameters. Bayesian Inference techniques for model updating require the assumption of a prior distribution. This choice of prior may affect posterior predictions and subsequent decisions on maintenance requirements, specially under the typical case in engineering applications of little informative data. Therefore, understanding how the choice of prior may affect the posterior prediction is of great interest. In this paper, a Robust Bayesian Inference technique evaluates the optimal and worst-case prior in the vicinity of a chosen nominal prior, and their corresponding posteriors. This technique employs an interacting Wasserstein gradient flow formulation. Two numerical case studies are used to showcase the proposed algorithm: a double-banana-posterior and a double beam structure. Optimal and worst-case prior are modelled by specifying an ambiguity set containing any distribution at a statistical distance to the nominal prior, less or equal to the radius. Examples show how particles flow from an initial assumed Gaussian distribution to the optimal worst-case prior distribution that lies inside the defined ambiguity set, and the resulting particles from the approximation to the posterior. The resulting posteriors may be used to yield the lower and upper bounds on subsequent calculations used for decision-making. If the metric used for decision-making is not sensitive to the resulting posteriors, it may be assumed that decisions taken are robust to prior uncertainty.

This work aims to address an open problem in data valuation literature concerning the efficient computation of Data Shapley for weighted $K$ nearest neighbor algorithm (WKNN-Shapley). By considering the accuracy of hard-label KNN with discretized weights as the utility function, we reframe the computation of WKNN-Shapley into a counting problem and introduce a quadratic-time algorithm, presenting a notable improvement from $O(N^K)$, the best result from existing literature. We develop a deterministic approximation algorithm that further improves computational efficiency while maintaining the key fairness properties of the Shapley value. Through extensive experiments, we demonstrate WKNN-Shapley's computational efficiency and its superior performance in discerning data quality compared to its unweighted counterpart.

Community Search (CS) aims to identify densely interconnected subgraphs corresponding to query vertices within a graph. However, existing heterogeneous graph-based community search methods need help identifying cross-group communities and suffer from efficiency issues, making them unsuitable for large graphs. This paper presents a fast community search model based on the Butterfly-Core Community (BCC) structure for heterogeneous graphs. The Random Walk with Restart (RWR) algorithm and butterfly degree comprehensively evaluate the importance of vertices within communities, allowing leader vertices to be rapidly updated to maintain cross-group cohesion. Moreover, we devised a more efficient method for updating vertex distances, which minimizes vertex visits and enhances operational efficiency. Extensive experiments on several real-world temporal graphs demonstrate the effectiveness and efficiency of this solution.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Graph Neural Networks (GNNs) have recently been used for node and graph classification tasks with great success, but GNNs model dependencies among the attributes of nearby neighboring nodes rather than dependencies among observed node labels. In this work, we consider the task of inductive node classification using GNNs in supervised and semi-supervised settings, with the goal of incorporating label dependencies. Because current GNNs are not universal (i.e., most-expressive) graph representations, we propose a general collective learning approach to increase the representation power of any existing GNN. Our framework combines ideas from collective classification with self-supervised learning, and uses a Monte Carlo approach to sampling embeddings for inductive learning across graphs. We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy, for a variety of state-of-the-art GNNs.

北京阿比特科技有限公司