We consider stochastic approximations of sampling algorithms, such as Stochastic Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD). We observe that the noise introduced by the stochastic approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian. We harness this structure to absorb the stochastic approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms. For SGLD, we prove the first stable convergence rate in KL divergence without requiring uniform warm start, assuming the target density satisfies a Log-Sobolev Inequality. Our result implies superior first-order oracle complexity compared to prior works, under significantly milder assumptions. We also prove the first guarantees for SGLD under even weaker conditions such as H\"{o}lder smoothness and Poincare Inequality, thus bridging the gap between the state-of-the-art guarantees for LMC and SGLD. Our analysis motivates a new algorithm called covariance correction, which corrects for the additional noise introduced by the stochastic approximation by rescaling the strength of the diffusion. Finally, we apply our techniques to analyze RBM, and significantly improve upon the guarantees in prior works (such as removing exponential dependence on horizon), under minimal assumptions.
This paper rigorously shows how over-parameterization changes the convergence behaviors of gradient descent (GD) for the matrix sensing problem, where the goal is to recover an unknown low-rank ground-truth matrix from near-isotropic linear measurements. First, we consider the symmetric setting with the symmetric parameterization where $M^* \in \mathbb{R}^{n \times n}$ is a positive semi-definite unknown matrix of rank $r \ll n$, and one uses a symmetric parameterization $XX^\top$ to learn $M^*$. Here $X \in \mathbb{R}^{n \times k}$ with $k > r$ is the factor matrix. We give a novel $\Omega (1/T^2)$ lower bound of randomly initialized GD for the over-parameterized case ($k >r$) where $T$ is the number of iterations. This is in stark contrast to the exact-parameterization scenario ($k=r$) where the convergence rate is $\exp (-\Omega (T))$. Next, we study asymmetric setting where $M^* \in \mathbb{R}^{n_1 \times n_2}$ is the unknown matrix of rank $r \ll \min\{n_1,n_2\}$, and one uses an asymmetric parameterization $FG^\top$ to learn $M^*$ where $F \in \mathbb{R}^{n_1 \times k}$ and $G \in \mathbb{R}^{n_2 \times k}$. Building on prior work, we give a global exact convergence result of randomly initialized GD for the exact-parameterization case ($k=r$) with an $\exp (-\Omega(T))$ rate. Furthermore, we give the first global exact convergence result for the over-parameterization case ($k>r$) with an $\exp(-\Omega(\alpha^2 T))$ rate where $\alpha$ is the initialization scale. This linear convergence result in the over-parameterization case is especially significant because one can apply the asymmetric parameterization to the symmetric setting to speed up from $\Omega (1/T^2)$ to linear convergence. On the other hand, we propose a novel method that only modifies one step of GD and obtains a convergence rate independent of $\alpha$, recovering the rate in the exact-parameterization case.
Empirical studies have demonstrated that the noise in stochastic gradient descent (SGD) aligns favorably with the local geometry of loss landscape. However, theoretical and quantitative explanations for this phenomenon remain sparse. In this paper, we offer a comprehensive theoretical investigation into the aforementioned {\em noise geometry} for over-parameterized linear (OLMs) models and two-layer neural networks. We scrutinize both average and directional alignments, paying special attention to how factors like sample size and input data degeneracy affect the alignment strength. As a specific application, we leverage our noise geometry characterizations to study how SGD escapes from sharp minima, revealing that the escape direction has significant components along flat directions. This is in stark contrast to GD, which escapes only along the sharpest directions. To substantiate our theoretical findings, both synthetic and real-world experiments are provided.
The problems of determining the permutation-representation number (prn) and the representation number of bipartite graphs are open in the literature. Moreover, the decision problem corresponding to the determination of the prn of a bipartite graph is NP-complete. However, these numbers were established for certain subclasses of bipartite graphs, e.g., for crown graphs. Further, it was conjectured that the crown graphs have the highest representation number among the bipartite graphs. In this work, first, we reconcile the relation between the prn of a comparability graph and the dimension of its induced poset and review the upper bounds on the prn of bipartite graphs. Then, we study the prn of bipartite graphs using the notion called neighborhood graphs. This approach substantiates the aforesaid conjecture and gives us theoretical evidence. In this connection, we devise a polynomial-time procedure to construct a word that represents a given bipartite graph permutationally. Accordingly, we provide a better upper bound for the prn of bipartite graphs. Further, we construct a class of bipartite graphs, viz., extended crown graphs, defined over posets and investigate its prn using the neighborhood graphs.
We propose a novel approach for generalizing the following rigid-body dynamics algorithms: Recursive Newton-Euler Algorithm, Articulated-Body Algorithm, and Extended-Force-Propagator Algorithm. The classic versions of these recursive algorithms require systems to have an open chain structure. Dealing with closed-chains has, conventionally, required different algorithms. In this paper, we demonstrate that the classic recursive algorithms can be modified to work for closed-chain mechanisms. The critical insight of our generalized algorithms is the clustering of bodies involved in local loop constraints. Clustering bodies enables loop constraints to be resolved locally, i.e., only when that group of bodies is encountered during a forward or backward pass. This local treatment avoids the need for large-scale matrix factorization. We provide self-contained derivations of the algorithms using familiar, physically meaningful concepts. Overall, our approach provides a foundation for simulating robotic systems with traditionally difficult-to-simulate designs, such as geared motors, differential drives, and four-bar mechanisms. The performance of our library of algorithms is validated numerically in C++ on various modern legged robots: the MIT Mini Cheetah, the MIT Humanoid, the UIUC Tello Humanoid, and a modified version of the JVRC-1 Humanoid. Our algorithms are shown to outperform state-of-the-art algorithms for computing constrained rigid-body dynamics.
Score distillation sampling (SDS) has shown great promise in text-to-3D generation by distilling pretrained large-scale text-to-image diffusion models, but suffers from over-saturation, over-smoothing, and low-diversity problems. In this work, we propose to model the 3D parameter as a random variable instead of a constant as in SDS and present variational score distillation (VSD), a principled particle-based variational framework to explain and address the aforementioned issues in text-to-3D generation. We show that SDS is a special case of VSD and leads to poor samples with both small and large CFG weights. In comparison, VSD works well with various CFG weights as ancestral sampling from diffusion models and simultaneously improves the diversity and sample quality with a common CFG weight (i.e., $7.5$). We further present various improvements in the design space for text-to-3D such as distillation time schedule and density initialization, which are orthogonal to the distillation algorithm yet not well explored. Our overall approach, dubbed ProlificDreamer, can generate high rendering resolution (i.e., $512\times512$) and high-fidelity NeRF with rich structure and complex effects (e.g., smoke and drops). Further, initialized from NeRF, meshes fine-tuned by VSD are meticulously detailed and photo-realistic. Project page and codes: //ml.cs.tsinghua.edu.cn/prolificdreamer/
Artificial Intelligence (AI), particularly through the advent of large-scale generative AI (GenAI) models such as Large Language Models (LLMs), has become a transformative element in contemporary technology. While these models have unlocked new possibilities, they simultaneously present significant challenges, such as concerns over data privacy and the propensity to generate misleading or fabricated content. Current frameworks for Responsible AI (RAI) often fall short in providing the granular guidance necessary for tangible application, especially for Accountability-a principle that is pivotal for ensuring transparent and auditable decision-making, bolstering public trust, and meeting increasing regulatory expectations. This study bridges the accountability gap by introducing a comprehensive metrics catalogue, formulated through a systematic multivocal literature review (MLR) that integrates findings from both academic and grey literature. Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems. This tripartite framework is designed to operationalize Accountability in AI, with a special emphasis on addressing the intricacies of GenAI. The proposed metrics catalogue provides a robust framework for instilling Accountability in AI systems. It offers practical, actionable guidance for organizations, thereby shaping responsible practices in the field.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).