Symmetric multilevel diversity coding (SMDC) is a source coding problem where the independent sources are ordered according to their importance. It was shown that separately encoding independent sources (referred to as ``\textit{superposition coding}") is optimal. In this paper, we consider an $(L,s)$ \textit{sliding secure} SMDC problem with security priority, where each source $X_{\alpha}~(s\leq \alpha\leq L)$ is kept perfectly secure if no more than $\alpha-s$ encoders are accessible. The reconstruction requirements of the $L$ sources are the same as classical SMDC. A special case of an $(L,s)$ sliding secure SMDC problem that the first $s-1$ sources are constants is called the $(L,s)$ \textit{multilevel secret sharing} problem. For $s=1$, the two problems coincide, and we show that superposition coding is optimal. The rate regions for the $(3,2)$ problems are characterized. It is shown that superposition coding is suboptimal for both problems. The main idea that joint encoding can reduce coding rates is that we can use the previous source $X_{\alpha-1}$ as the secret key of $X_{\alpha}$. Based on this idea, we propose a coding scheme that achieves the minimum sum rate of the general $(L,s)$ multilevel secret sharing problem. Moreover, superposition coding of the $s$ sets of sources $X_1$, $X_2$, $\cdots$, $X_{s-1}$, $(X_s, X_{s+1}, \cdots, X_L)$ achieves the minimum sum rate of the general sliding secure SMDC problem.
With the advent of exascale computing, effective load balancing in massively parallel software applications is critically important for leveraging the full potential of high performance computing systems. Load balancing is the distribution of computational work between available processors. Here, we investigate the application of quantum annealing to load balance two paradigmatic algorithms in high performance computing. Namely, adaptive mesh refinement and smoothed particle hydrodynamics are chosen as representative grid and off-grid target applications. While the methodology for obtaining real simulation data to partition is application specific, the proposed balancing protocol itself remains completely general. In a grid based context, quantum annealing is found to outperform classical methods such as the round robin protocol but lacks a decisive advantage over more advanced methods such as steepest descent or simulated annealing despite remaining competitive. The primary obstacle to scalability is found to be limited coupling on current quantum annealing hardware. However, for the more complex particle formulation, approached as a multi-objective optimization, quantum annealing solutions are demonstrably Pareto dominant to state of the art classical methods across both objectives. This signals a noteworthy advancement in solution quality which can have a large impact on effective CPU usage.
There is an urgent need to incorporate the perspectives of culturally diverse groups into AI developments. We present a novel conceptual framework for research that aims to expand, reimagine, and reground mainstream visions of AI using independent and interdependent cultural models of the self and the environment. Two survey studies support this framework and provide preliminary evidence that people apply their cultural models when imagining their ideal AI. Compared with European American respondents, Chinese respondents viewed it as less important to control AI and more important to connect with AI, and were more likely to prefer AI with capacities to influence. Reflecting both cultural models, findings from African American respondents resembled both European American and Chinese respondents. We discuss study limitations and future directions and highlight the need to develop culturally responsive and relevant AI to serve a broader segment of the world population.
Recent advances in machine learning have significantly impacted the field of information extraction, with Large Language Models (LLMs) playing a pivotal role in extracting structured information from unstructured text. This paper explores the challenges and limitations of current methodologies in structured entity extraction and introduces a novel approach to address these issues. We contribute to the field by first introducing and formalizing the task of Structured Entity Extraction (SEE), followed by proposing Approximate Entity Set OverlaP (AESOP) Metric designed to appropriately assess model performance on this task. Later, we propose a new model that harnesses the power of LLMs for enhanced effectiveness and efficiency through decomposing the entire extraction task into multiple stages. Quantitative evaluation and human side-by-side evaluation confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction.
Blind image restoration (IR) is a common yet challenging problem in computer vision. Classical model-based methods and recent deep learning (DL)-based methods represent two different methodologies for this problem, each with their own merits and drawbacks. In this paper, we propose a novel blind image restoration method, aiming to integrate both the advantages of them. Specifically, we construct a general Bayesian generative model for the blind IR, which explicitly depicts the degradation process. In this proposed model, a pixel-wise non-i.i.d. Gaussian distribution is employed to fit the image noise. It is with more flexibility than the simple i.i.d. Gaussian or Laplacian distributions as adopted in most of conventional methods, so as to handle more complicated noise types contained in the image degradation. To solve the model, we design a variational inference algorithm where all the expected posteriori distributions are parameterized as deep neural networks to increase their model capability. Notably, such an inference algorithm induces a unified framework to jointly deal with the tasks of degradation estimation and image restoration. Further, the degradation information estimated in the former task is utilized to guide the latter IR process. Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
Dense retrieval methods have demonstrated promising performance in multilingual information retrieval, where queries and documents can be in different languages. However, dense retrievers typically require a substantial amount of paired data, which poses even greater challenges in multilingual scenarios. This paper introduces UMR, an Unsupervised Multilingual dense Retriever trained without any paired data. Our approach leverages the sequence likelihood estimation capabilities of multilingual language models to acquire pseudo labels for training dense retrievers. We propose a two-stage framework which iteratively improves the performance of multilingual dense retrievers. Experimental results on two benchmark datasets show that UMR outperforms supervised baselines, showcasing the potential of training multilingual retrievers without paired data, thereby enhancing their practicality. Our source code, data, and models are publicly available at //github.com/MiuLab/UMR
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.
We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.