亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consistent editing of real images is a challenging task, as it requires performing non-rigid edits (e.g., changing postures) to the main objects in the input image without changing their identity or attributes. To guarantee consistent attributes, some existing methods fine-tune the entire model or the textual embedding for structural consistency, but they are time-consuming and fail to perform non-rigid edits. Other works are tuning-free, but their performances are weakened by the quality of Denoising Diffusion Implicit Model (DDIM) reconstruction, which often fails in real-world scenarios. In this paper, we present a novel approach called Tuning-free Inversion-enhanced Control (TIC), which directly correlates features from the inversion process with those from the sampling process to mitigate the inconsistency in DDIM reconstruction. Specifically, our method effectively obtains inversion features from the key and value features in the self-attention layers, and enhances the sampling process by these inversion features, thus achieving accurate reconstruction and content-consistent editing. To extend the applicability of our method to general editing scenarios, we also propose a mask-guided attention concatenation strategy that combines contents from both the inversion and the naive DDIM editing processes. Experiments show that the proposed method outperforms previous works in reconstruction and consistent editing, and produces impressive results in various settings.

相關內容

Scenario data play a vital role in autonomous driving related researches, and it is essential to obtain refined descriptions and labels to extract and index scenarios with different types of interactions. However, existing methods cannot cope well with the problem of scenario classification and comparison with vehicle interactions as the core. In this paper, we propose a framework for interaction-based refined scenario classification and labeling. Based on the summarized basic types of vehicle interactions, we slice scenario data stream into a series of scenario segments via spatiotemporal scenario evolution tree. The scenario segment statistics of many published scenario datasets are further analyzed. We also propose the scenario metric Graph-DTW based on Graph Computation Tree and Dynamic Time Warping to conduct refined scenario comparison and labeling. The extreme interactive scenarios and corner cases can be efficiently filtered and extracted. Moreover, testing examples on trajectory prediction model demonstrate the effectiveness and advantages of scenario labeling and the proposed metric. The overall framework can provide solid support for the usage and indexing of scenario data.

The ability to generate sentiment-controlled feedback in response to multimodal inputs, comprising both text and images, addresses a critical gap in human-computer interaction by enabling systems to provide empathetic, accurate, and engaging responses. This capability has profound applications in healthcare, marketing, and education. To this end, we construct a large-scale Controllable Multimodal Feedback Synthesis (CMFeed) dataset and propose a controllable feedback synthesis system. The proposed system includes an encoder, decoder, and controllability block for textual and visual inputs. It extracts textual and visual features using a transformer and Faster R-CNN networks and combines them to generate feedback. The CMFeed dataset encompasses images, text, reactions to the post, human comments with relevance scores, and reactions to the comments. The reactions to the post and comments are utilized to train the proposed model to produce feedback with a particular (positive or negative) sentiment. A sentiment classification accuracy of 77.23% has been achieved, 18.82% higher than the accuracy without using the controllability. Moreover, the system incorporates a similarity module for assessing feedback relevance through rank-based metrics. It implements an interpretability technique to analyze the contribution of textual and visual features during the generation of uncontrolled and controlled feedback.

In endoscopic imaging, the recorded images are prone to exposure abnormalities, so maintaining high-quality images is important to assist healthcare professionals in performing decision-making. To overcome this issue, We design a frequency-domain based network, called FD-Vision Mamba (FDVM-Net), which achieves high-quality image exposure correction by reconstructing the frequency domain of endoscopic images. Specifically, inspired by the State Space Sequence Models (SSMs), we develop a C-SSM block that integrates the local feature extraction ability of the convolutional layer with the ability of the SSM to capture long-range dependencies. A two-path network is built using C-SSM as the basic function cell, and these two paths deal with the phase and amplitude information of the image, respectively. Finally, a degraded endoscopic image is reconstructed by FDVM-Net to obtain a high-quality clear image. Extensive experimental results demonstrate that our method achieves state-of-the-art results in terms of speed and accuracy, and it is noteworthy that our method can enhance endoscopic images of arbitrary resolution. The URL of the code is \url{//github.com/zzr-idam/FDVM-Net}.

Current 3D content generation builds on generative models that output RGB images. Modern graphics pipelines, however, require physically-based rendering (PBR) material properties. We propose to model the PBR image distribution directly to avoid photometric inaccuracies in RGB generation and the inherent ambiguity in extracting PBR from RGB. Existing paradigms for cross-modal finetuning are not suited for PBR generation due to a lack of data and the high dimensionality of the output modalities: we overcome both challenges by retaining a frozen RGB model and tightly linking a newly trained PBR model using a novel cross-network communication paradigm. As the base RGB model is fully frozen, the proposed method does not risk catastrophic forgetting during finetuning and remains compatible with techniques such as IPAdapter pretrained for the base RGB model. We validate our design choices, robustness to data sparsity, and compare against existing paradigms with an extensive experimental section.

The strong temporal consistency of surveillance video enables compelling compression performance with traditional methods, but downstream vision applications operate on decoded image frames with a high data rate. Since it is not straightforward for applications to extract information on temporal redundancy from the compressed video representations, we propose a novel system which conveys temporal redundancy within a sparse decompressed representation. We leverage a video representation framework called ADDER to transcode framed videos to sparse, asynchronous intensity samples. We introduce mechanisms for content adaptation, lossy compression, and asynchronous forms of classical vision algorithms. We evaluate our system on the VIRAT surveillance video dataset, and we show a median 43.7% speed improvement in FAST feature detection compared to OpenCV. We run the same algorithm as OpenCV, but only process pixels that receive new asynchronous events, rather than process every pixel in an image frame. Our work paves the way for upcoming neuromorphic sensors and is amenable to future applications with spiking neural networks.

Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations.

Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments. To solve this issue, previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features, limiting the generalization and adaptability of the model. Previous methods use the reference gradient that is constructed from original images and synthetic ground-truth images. This may cause the network performance to be influenced by some low-quality training data. Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space. This process improves image quality and avoids local optima. Moreover, we propose a Feature Restoration and Reconstruction module (FRR) based on a Channel Combination Inference (CCI) strategy and a Frequency Domain Smoothing module (FRS). These modules decouple other degradation features while reducing the impact of various types of noise on network performance. Experiments on multiple public datasets demonstrate the superiority of our method over existing state-of-the-art approaches, especially in achieving performance milestones: PSNR of 25.6dB and SSIM of 0.93 on the UIEB dataset. Its efficiency in terms of parameter size and inference time further attests to its broad practicality. The code will be made publicly available.

Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visual objects and text tokens through layers of cross-modality attention. However, these approaches do not utilize the rich structure of the scene and the interactions between objects which are essential in answering complex commonsense questions. We propose a Scene Graph Enhanced Image-Text Learning (SGEITL) framework to incorporate visual scene graphs in commonsense reasoning. To exploit the scene graph structure, at the model structure level, we propose a multihop graph transformer for regularizing attention interaction among hops. As for pre-training, a scene-graph-aware pre-training method is proposed to leverage structure knowledge extracted in the visual scene graph. Moreover, we introduce a method to train and generate domain-relevant visual scene graphs using textual annotations in a weakly-supervised manner. Extensive experiments on VCR and other tasks show a significant performance boost compared with the state-of-the-art methods and prove the efficacy of each proposed component.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

北京阿比特科技有限公司