亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural network pruning offers an effective method for compressing a multilingual automatic speech recognition (ASR) model with minimal performance loss. However, it entails several rounds of pruning and re-training needed to be run for each language. In this work, we propose the use of an adaptive masking approach in two scenarios for pruning a multilingual ASR model efficiently, each resulting in sparse monolingual models or a sparse multilingual model (named as Dynamic ASR Pathways). Our approach dynamically adapts the sub-network, avoiding premature decisions about a fixed sub-network structure. We show that our approach outperforms existing pruning methods when targeting sparse monolingual models. Further, we illustrate that Dynamic ASR Pathways jointly discovers and trains better sub-networks (pathways) of a single multilingual model by adapting from different sub-network initializations, thereby reducing the need for language-specific pruning.

相關內容

語(yu)音(yin)識別(bie)是計算(suan)機科(ke)(ke)學(xue)(xue)和計算(suan)語(yu)言(yan)學(xue)(xue)的一個跨學(xue)(xue)科(ke)(ke)子領域(yu),它(ta)發展(zhan)了一些(xie)方法和技(ji)術,使計算(suan)機可以將口語(yu)識別(bie)和翻譯成文本。 它(ta)也被稱為(wei)自動(dong)語(yu)音(yin)識別(bie)(ASR),計算(suan)機語(yu)音(yin)識別(bie)或語(yu)音(yin)轉(zhuan)文本(STT)。它(ta)整合了計算(suan)機科(ke)(ke)學(xue)(xue),語(yu)言(yan)學(xue)(xue)和計算(suan)機工(gong)程領域(yu)的知(zhi)識和研究(jiu)。

Deep Learning (DL) models have rapidly advanced, focusing on achieving high performance through testing model accuracy and robustness. However, it is unclear whether DL projects, as software systems, are tested thoroughly or functionally correct when there is a need to treat and test them like other software systems. Therefore, we empirically study the unit tests in open-source DL projects, analyzing 9,129 projects from GitHub. We find that: 1) unit tested DL projects have positive correlation with the open-source project metrics and have a higher acceptance rate of pull requests, 2) 68% of the sampled DL projects are not unit tested at all, 3) the layer and utilities (utils) of DL models have the most unit tests. Based on these findings and previous research outcomes, we built a mapping taxonomy between unit tests and faults in DL projects. We discuss the implications of our findings for developers and researchers and highlight the need for unit testing in open-source DL projects to ensure their reliability and stability. The study contributes to this community by raising awareness of the importance of unit testing in DL projects and encouraging further research in this area.

3D single object tracking (SOT) is an important and challenging task for the autonomous driving and mobile robotics. Most existing methods perform tracking between two consecutive frames while ignoring the motion patterns of the target over a series of frames, which would cause performance degradation in the scenes with sparse points. To break through this limitation, we introduce Sequence-to-Sequence tracking paradigm and a tracker named SeqTrack3D to capture target motion across continuous frames. Unlike previous methods that primarily adopted three strategies: matching two consecutive point clouds, predicting relative motion, or utilizing sequential point clouds to address feature degradation, our SeqTrack3D combines both historical point clouds and bounding box sequences. This novel method ensures robust tracking by leveraging location priors from historical boxes, even in scenes with sparse points. Extensive experiments conducted on large-scale datasets show that SeqTrack3D achieves new state-of-the-art performances, improving by 6.00% on NuScenes and 14.13% on Waymo dataset. The code will be made public at //github.com/aron-lin/seqtrack3d.

This paper presents and implements the re-usability of scenarios within scenarios for behavior-driven development (BDD) Gherkin test scripts in the Cucumber Java framework. Though the focus of the presented work is on scenario re-usability through an implementation within the Cucumber BDD Java framework, the paper also dives a little into the limitations of Cucumber single-threaded scenario execution model. This implementation increases the modularity and efficiency of the test suite. The paper also discusses VSCode step definition auto-completion integration, simplifying the test script writing process. This functionality is handy to Quality Assurance(QA) test writers, allowing instant access to relevant step definitions. In addition, the use of these methods in a popular continuous integration and delivery platform Jenkins as a Maven Java project is discussed. This integration with Jenkins, facilitates for more efficient test automation for continuous deployment scenarios. Empirical research and practical applications reveal significant improvements in the speed and efficiency of test writing, which is especially valuable for large and complex software projects. Integrating these methods into traditional sequential BDD practices paves the way towards more effective, efficient, and sustainable test automation strategies.

We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain. We aim to solve this problem via online distributionally robust Markov decision processes (DRMDPs), where the learning algorithm actively interacts with the source domain while seeking the optimal performance under the worst possible dynamics that is within an uncertainty set of the source domain's transition kernel. We provide the first study on online DRMDPs with function approximation for off-dynamics RL. We find that DRMDPs' dual formulation can induce nonlinearity, even when the nominal transition kernel is linear, leading to error propagation. By designing a $d$-rectangular uncertainty set using the total variation distance, we remove this additional nonlinearity and bypass the error propagation. We then introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics RL with function approximation, and establish a polynomial suboptimality bound that is independent of the state and action space sizes. Our work makes the first step towards a deeper understanding of the provable efficiency of online DRMDPs with linear function approximation. Finally, we substantiate the performance and robustness of DR-LSVI-UCB through different numerical experiments.

With the increasing reliance of smart grids on correctly functioning SCADA systems and their vulnerability to cyberattacks, there is a pressing need for effective security measures. SCADA systems are prone to cyberattacks, posing risks to critical infrastructure. As there is a lack of host-based intrusion detection systems specifically designed for the stable nature of SCADA systems, the objective of this work is to propose a host-based intrusion detection system tailored for SCADA systems in smart grids. The proposed system utilizes USB device identification, flagging, and process memory scanning to monitor and detect anomalies in SCADA systems, providing enhanced security measures. Evaluation in three different scenarios demonstrates the tool's effectiveness in detecting and disabling malware. The proposed approach effectively identifies potential threats and enhances the security of SCADA systems in smart grids, providing a promising solution to protect against cyberattacks.

Recent studies show that vision models pre-trained in generic visual learning tasks with large-scale data can provide useful feature representations for a wide range of visual perception problems. However, few attempts have been made to exploit pre-trained foundation models in visual place recognition (VPR). Due to the inherent difference in training objectives and data between the tasks of model pre-training and VPR, how to bridge the gap and fully unleash the capability of pre-trained models for VPR is still a key issue to address. To this end, we propose a novel method to realize seamless adaptation of pre-trained models for VPR. Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method to achieve both global and local adaptation efficiently, in which only lightweight adapters are tuned without adjusting the pre-trained model. Besides, to guide effective adaptation, we propose a mutual nearest neighbor local feature loss, which ensures proper dense local features are produced for local matching and avoids time-consuming spatial verification in re-ranking. Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time, and uses about only 3% retrieval runtime of the two-stage VPR methods with RANSAC-based spatial verification. It ranks 1st on the MSLS challenge leaderboard (at the time of submission). The code is released at //github.com/Lu-Feng/SelaVPR.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.

北京阿比特科技有限公司