Convolutional Neural Networks (CNNs) have demonstrated remarkable ability throughout the field of computer vision. However, CNN inference requires a large number of arithmetic operations, making them expensive to deploy in hardware. Current approaches alleviate this issue by developing hardware-supported, algorithmic processes to simplify spatial convolution functions. However, these methods still heavily rely on matrix multiplication, leading to significant computational overhead. To bridge the gap between hardware, algorithmic acceleration, and approximate matrix multiplication, we propose TabConv, a novel, table-based approximation for convolution to significantly reduce arithmetic operations during inference. Additionally, we introduce a priority masking technique based on cosine similarity to select layers for table-based approximation, thereby maintaining the model performance. We evaluate our approach on popular CNNs: ResNet-18, ResNet-34, and NetworkInNetwork (NIN). TabConv preserves over 93% of the original model's performance while reducing arithmetic operations by 36.5%, 25.8%, and 99.4% for ResNet-18 on CIFAR-10, CIFAR-100, and MNIST, respectively, 35.6% and 99.3% for ResNet-34 on CIFAR-10 and MNIST, and 98.9% for NIN on MNIST, achieving low-computation inference.
Gaussian Splatting has garnered widespread attention due to its exceptional performance. Consequently, SLAM systems based on Gaussian Splatting have emerged, leveraging its capabilities for rapid real-time rendering and high-fidelity mapping. However, current Gaussian Splatting SLAM systems usually struggle with large scene representation and lack effective loop closure adjustments and scene generalization capabilities. To address these issues, we introduce NGM-SLAM, the first GS-SLAM system that utilizes neural radiance field submaps for progressive scene expression, effectively integrating the strengths of neural radiance fields and 3D Gaussian Splatting. We have developed neural implicit submaps as supervision and achieve high-quality scene expression and online loop closure adjustments through Gaussian rendering of fused submaps. Our results on multiple real-world scenes and large-scale scene datasets demonstrate that our method can achieve accurate gap filling and high-quality scene expression, supporting both monocular, stereo, and RGB-D inputs, and achieving state-of-the-art scene reconstruction and tracking performance.
Graph Neural Networks (GNNs) have shown remarkable performance in various tasks. However, recent works reveal that GNNs are vulnerable to backdoor attacks. Generally, backdoor attack poisons the graph by attaching backdoor triggers and the target class label to a set of nodes in the training graph. A GNN trained on the poisoned graph will then be misled to predict test nodes attached with trigger to the target class. Despite their effectiveness, our empirical analysis shows that triggers generated by existing methods tend to be out-of-distribution (OOD), which significantly differ from the clean data. Hence, these injected triggers can be easily detected and pruned with widely used outlier detection methods in real-world applications. Therefore, in this paper, we study a novel problem of unnoticeable graph backdoor attacks with in-distribution (ID) triggers. To generate ID triggers, we introduce an OOD detector in conjunction with an adversarial learning strategy to generate the attributes of the triggers within distribution. To ensure a high attack success rate with ID triggers, we introduce novel modules designed to enhance trigger memorization by the victim model trained on poisoned graph. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method in generating in distribution triggers that can by-pass various defense strategies while maintaining a high attack success rate.
Graph Masked Autoencoders (GMAEs) have emerged as a notable self-supervised learning approach for graph-structured data. Existing GMAE models primarily focus on reconstructing node-level information, categorizing them as single-scale GMAEs. This methodology, while effective in certain contexts, tends to overlook the complex hierarchical structures inherent in many real-world graphs. For instance, molecular graphs exhibit a clear hierarchical organization in the form of the atoms-functional groups-molecules structure. Hence, the inability of single-scale GMAE models to incorporate these hierarchical relationships often leads to their inadequate capture of crucial high-level graph information, resulting in a noticeable decline in performance. To address this limitation, we propose Hierarchical Graph Masked AutoEncoders (Hi-GMAE), a novel multi-scale GMAE framework designed to handle the hierarchical structures within graphs. First, Hi-GMAE constructs a multi-scale graph hierarchy through graph pooling, enabling the exploration of graph structures across different granularity levels. To ensure masking uniformity of subgraphs across these scales, we propose a novel coarse-to-fine strategy that initiates masking at the coarsest scale and progressively back-projects the mask to the finer scales. Furthermore, we integrate a gradual recovery strategy with the masking process to mitigate the learning challenges posed by completely masked subgraphs. Diverging from the standard graph neural network (GNN) used in GMAE models, Hi-GMAE modifies its encoder and decoder into hierarchical structures. This entails using GNN at the finer scales for detailed local graph analysis and employing a graph transformer at coarser scales to capture global information. Our experiments on 15 graph datasets consistently demonstrate that Hi-GMAE outperforms 17 state-of-the-art self-supervised competitors.
Generative approaches have significantly influenced Aspect-Based Sentiment Analysis (ABSA), garnering considerable attention. However, existing studies often predict target text components monolithically, neglecting the benefits of utilizing single elements for tuple prediction. In this paper, we introduce Element to Tuple Prompting (E2TP), employing a two-step architecture. The former step focuses on predicting single elements, while the latter step completes the process by mapping these predicted elements to their corresponding tuples. E2TP is inspired by human problem-solving, breaking down tasks into manageable parts, using the first step's output as a guide in the second step. Within this strategy, three types of paradigms, namely E2TP($diet$), E2TP($f_1$), and E2TP($f_2$), are designed to facilitate the training process. Beyond dataset-specific experiments, our paper addresses cross-domain scenarios, demonstrating the effectiveness and generalizability of the approach. By conducting a comprehensive analysis on various benchmarks, we show that E2TP achieves new state-of-the-art results in nearly all cases.
Introducing HyperSense, our co-designed hardware and software system efficiently controls Analog-to-Digital Converter (ADC) modules' data generation rate based on object presence predictions in sensor data. Addressing challenges posed by escalating sensor quantities and data rates, HyperSense reduces redundant digital data using energy-efficient low-precision ADC, diminishing machine learning system costs. Leveraging neurally-inspired HyperDimensional Computing (HDC), HyperSense analyzes real-time raw low-precision sensor data, offering advantages in handling noise, memory-centricity, and real-time learning. Our proposed HyperSense model combines high-performance software for object detection with real-time hardware prediction, introducing the novel concept of Intelligent Sensor Control. Comprehensive software and hardware evaluations demonstrate our solution's superior performance, evidenced by the highest Area Under the Curve (AUC) and sharpest Receiver Operating Characteristic (ROC) curve among lightweight models. Hardware-wise, our FPGA-based domain-specific accelerator tailored for HyperSense achieves a 5.6x speedup compared to YOLOv4 on NVIDIA Jetson Orin while showing up to 92.1% energy saving compared to the conventional system. These results underscore HyperSense's effectiveness and efficiency, positioning it as a promising solution for intelligent sensing and real-time data processing across diverse applications.
There has been a growing interest in extracting formal descriptions of the system behaviors from data. Signal Temporal Logic (STL) is an expressive formal language used to describe spatial-temporal properties with interpretability. This paper introduces TLINet, a neural-symbolic framework for learning STL formulas. The computation in TLINet is differentiable, enabling the usage of off-the-shelf gradient-based tools during the learning process. In contrast to existing approaches, we introduce approximation methods for max operator designed specifically for temporal logic-based gradient techniques, ensuring the correctness of STL satisfaction evaluation. Our framework not only learns the structure but also the parameters of STL formulas, allowing flexible combinations of operators and various logical structures. We validate TLINet against state-of-the-art baselines, demonstrating that our approach outperforms these baselines in terms of interpretability, compactness, rich expressibility, and computational efficiency.
Despite the recent progress in Graph Neural Networks (GNNs), it remains challenging to explain the predictions made by GNNs. Existing explanation methods mainly focus on post-hoc explanations where another explanatory model is employed to provide explanations for a trained GNN. The fact that post-hoc methods fail to reveal the original reasoning process of GNNs raises the need of building GNNs with built-in interpretability. In this work, we propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs and provides a new perspective on the explanations of GNNs. In ProtGNN, the explanations are naturally derived from the case-based reasoning process and are actually used during classification. The prediction of ProtGNN is obtained by comparing the inputs to a few learned prototypes in the latent space. Furthermore, for better interpretability and higher efficiency, a novel conditional subgraph sampling module is incorporated to indicate which part of the input graph is most similar to each prototype in ProtGNN+. Finally, we evaluate our method on a wide range of datasets and perform concrete case studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.
Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.