亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal reliability in directed acyclic graphs.

相關內容

Numerical simulations of kinetic problems can become prohibitively expensive due to their large memory footprint and computational costs. A method that has proven to successfully reduce these costs is the dynamical low-rank approximation (DLRA). One key question when using DLRA methods is the construction of robust time integrators that preserve the invariances and associated conservation laws of the original problem. In this work, we demonstrate that the augmented basis update & Galerkin integrator (BUG) preserves solution invariances and the associated conservation laws when using a conservative truncation step and an appropriate time and space discretization. We present numerical comparisons to existing conservative integrators and discuss advantages and disadvantages

We analyse a second-order SPDE model in multiple space dimensions and develop estimators for the parameters of this model based on discrete observations of a solution in time and space on a bounded domain. While parameter estimation for one and two spatial dimensions was established in recent literature, this is the first work which generalizes the theory to a general, multi-dimensional framework. Our approach builds upon realized volatilities, enabling the construction of an oracle estimator for volatility within the underlying model. Furthermore, we show that the realized volatilities have an asymptotic illustration as response of a log-linear model with spatial explanatory variable. This yields novel and efficient estimators based on realized volatilities with optimal rates of convergence and minimal variances. For proving central limit theorems, we use a high-frequency observation scheme. To showcase our results, we conduct a Monte Carlo simulation.

We propose a semi-automatic staging area for efficiently building an accurate database of experimental physical properties of superconductors from literature, called SuperCon2, to enrich the existing manually-built superconductor database SuperCon. Here we report our curation interface (SuperCon2 Interface) and a workflow managing the state transitions of each examined record, to validate the dataset of superconductors from PDF documents collected using Grobid-superconductors in a previous work. This curation workflow allows both automatic and manual operations, the former contains ``anomaly detection'' that scans new data identifying outliers, and a ``training data collector'' mechanism that collects training data examples based on manual corrections. Such training data collection policy is effective in improving the machine-learning models with a reduced number of examples. For manual operations, the interface (SuperCon2 interface) is developed to increase efficiency during manual correction by providing a smart interface and an enhanced PDF document viewer. We show that our interface significantly improves the curation quality by boosting precision and recall as compared with the traditional ``manual correction''. Our semi-automatic approach would provide a solution for achieving a reliable database with text-data mining of scientific documents.

We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other applications.

Numerical methods for computing the solutions of Markov backward stochastic differential equations (BSDEs) driven by continuous-time Markov chains (CTMCs) are explored. The main contributions of this paper are as follows: (1) we observe that Euler-Maruyama temporal discretization methods for solving Markov BSDEs driven by CTMCs are equivalent to exponential integrators for solving the associated systems of ordinary differential equations (ODEs); (2) we introduce multi-stage Euler-Maruyama methods for effectively solving "stiff" Markov BSDEs driven by CTMCs; these BSDEs typically arise from the spatial discretization of Markov BSDEs driven by Brownian motion; (3) we propose a multilevel spatial discretization method on sparse grids that efficiently approximates high-dimensional Markov BSDEs driven by Brownian motion with a combination of multiple Markov BSDEs driven by CTMCs on grids with different resolutions. We also illustrate the effectiveness of the presented methods with a number of numerical experiments in which we treat nonlinear BSDEs arising from option pricing problems in finance.

This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.

Feedforward neural networks (FNNs) are typically viewed as pure prediction algorithms, and their strong predictive performance has led to their use in many machine-learning applications. However, their flexibility comes with an interpretability trade-off; thus, FNNs have been historically less popular among statisticians. Nevertheless, classical statistical theory, such as significance testing and uncertainty quantification, is still relevant. Supplementing FNNs with methods of statistical inference, and covariate-effect visualisations, can shift the focus away from black-box prediction and make FNNs more akin to traditional statistical models. This can allow for more inferential analysis, and, hence, make FNNs more accessible within the statistical-modelling context.

A space-time-parameters structure of the parametric parabolic PDEs motivates the application of tensor methods to define reduced order models (ROMs). Within a tensor-based ROM framework, the matrix SVD -- a traditional dimension reduction technique -- yields to a low-rank tensor decomposition (LRTD). Such tensor extension of the Galerkin proper orthogonal decomposition ROMs (POD-ROMs) benefits both the practical efficiency of the ROM and its amenability for the rigorous error analysis when applied to parametric PDEs. The paper addresses the error analysis of the Galerkin LRTD-ROM for an abstract linear parabolic problem that depends on multiple physical parameters. An error estimate for the LRTD-ROM solution is proved, which is uniform with respect to problem parameters and extends to parameter values not in a sampling/training set. The estimate is given in terms of discretization and sampling mesh properties, and LRTD accuracy. The estimate depends on the smoothness rather than on the Kolmogorov n-widths of the parameterized manifold of solutions. Theoretical results are illustrated with several numerical experiments.

We propose a novel and simple spectral method based on the semi-discrete Fourier transforms to discretize the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$. Numerical analysis and experiments are provided to study its performance. Our method has the same symbol $|\xi|^\alpha$ as the fractional Laplacian $(-\Delta)^\frac{\alpha}{2}$ at the discrete level, and thus it can be viewed as the exact discrete analogue of the fractional Laplacian. This {\it unique feature} distinguishes our method from other existing methods for the fractional Laplacian. Note that our method is different from the Fourier pseudospectral methods in the literature, which are usually limited to periodic boundary conditions (see Remark \ref{remark0}). Numerical analysis shows that our method can achieve a spectral accuracy. The stability and convergence of our method in solving the fractional Poisson equations were analyzed. Our scheme yields a multilevel Toeplitz stiffness matrix, and thus fast algorithms can be developed for efficient matrix-vector products. The computational complexity is ${\mathcal O}(2N\log(2N))$, and the memory storage is ${\mathcal O}(N)$ with $N$ the total number of points. Extensive numerical experiments verify our analytical results and demonstrate the effectiveness of our method in solving various problems.

This paper presents a novel centralized, variational data assimilation approach for calibrating transient dynamic models in electrical power systems, focusing on load model parameters. With the increasing importance of inverter-based resources, assessing power systems' dynamic performance under disturbances has become challenging, necessitating robust model calibration methods. The proposed approach expands on previous Bayesian frameworks by establishing a posterior distribution of parameters using an approximation around the maximum a posteriori value. We illustrate the efficacy of our method by generating events of varying intensity, highlighting its ability to capture the systems' evolution accurately and with associated uncertainty estimates. This research improves the precision of dynamic performance assessments in modern power systems, with potential applications in managing uncertainties and optimizing system operations.

北京阿比特科技有限公司