Background: Mental health problems are prevalent in college students. The COVID-19 pandemic exacerbated the problems, and created a surge in the popularity of telehealth and mobile health solutions. Despite that mobile health is a promising approach to help students with mental health needs, few studies exist in investigating key features students need in a mental health self-management tool. Objective: The objective of our study was to identified key requirements and features for the design of a student-centered mental health self-management tool. Methods: An interview study was first conducted to understand college students' needs and preferences on a mental health self-management tool. Functional information requirement analysis was then conducted to translate the needs into design implications. Results: A total of 153 university students were recruited for the semi-structured interview. The participants mentioned several features including coping techniques, artificial intelligence, time management, tracking, and communication with others. Participant's preferences on usability and privacy settings were also collected. The desired functions were analyzed and turned into design-agnostic information requirements. Conclusions: This study documents findings from interviews with university students to understand their needs and preferences for a tool to help with self-management of mental health.
Recently the use of mobile technologies in Ecological Momentary Assessments (EMA) and Interventions (EMI) has made it easier to collect data suitable for intra-individual variability studies in the medical field. Nevertheless, especially when self-reports are used during the data collection process, there are difficulties in balancing data quality and the burden placed on the subjects. In this paper, we address this problem for a specific EMA setting which aims to submit a demanding task to subjects at high/low values of a self-reported variable. We adopt a dynamic approach inspired by control chart methods and design optimization techniques to obtain an EMA triggering mechanism for data collection which takes into account both the individual variability of the self-reported variable and of the adherence rate. We test the algorithm in both a simulation setting and with real, large-scale data from a tinnitus longitudinal study. A Wilcoxon-Mann-Whitney Rank Sum Test shows that the algorithm tends to have both a higher F1 score and utility than a random schedule and a rule-based algorithm with static thresholds, which are the current state-of-the-art approaches. In conclusion, the algorithm is proven effective in balancing data quality and the burden placed on the participants, especially, as the analysis performed suggest, in studies where data collection is impacted by adherence.
Modern video object segmentation (VOS) algorithms have achieved remarkably high performance in a sequential processing order, while most of currently prevailing pipelines still show some obvious inadequacy like accumulative error, unknown robustness or lack of proper interpretation tools. In this paper, we place the semi-supervised video object segmentation problem into a cyclic workflow and find the defects above can be collectively addressed via the inherent cyclic property of semi-supervised VOS systems. Firstly, a cyclic mechanism incorporated to the standard sequential flow can produce more consistent representations for pixel-wise correspondance. Relying on the accurate reference mask in the starting frame, we show that the error propagation problem can be mitigated. Next, a simple gradient correction module, which naturally extends the offline cyclic pipeline to an online manner, can highlight the high-frequent and detailed part of results to further improve the segmentation quality while keeping feasible computation cost. Meanwhile such correction can protect the network from severe performance degration resulted from interference signals. Finally we develop cycle effective receptive field (cycle-ERF) based on gradient correction process to provide a new perspective into analyzing object-specific regions of interests. We conduct comprehensive comparison and detailed analysis on challenging benchmarks of DAVIS16, DAVIS17 and Youtube-VOS, demonstrating that the cyclic mechanism is helpful to enhance segmentation quality, improve the robustness of VOS systems, and further provide qualitative comparison and interpretation on how different VOS algorithms work. The code of this project can be found at //github.com/lyxok1/STM-Training
Adopting a good health information system (HIS) is essential for providing high-quality healthcare. With rapid advances in technology in the healthcare industry in recent years, healthcare providers seek effective options to deal with numerous diseases and a growing number of patients, adopting advanced HIS such as for clinical decision support. While the clinical decision support systems (CDSS) can help medical personnel make better decisions, they may bring negative results due to a lack of understanding of the elements that influence GP's adoption of CDSS. This paper focuses on discovering obstacles that may contribute to the problems surrounding CDSS adoption. Thirty general practitioners were interviewed from different primary health centers in Saudi Arabia in order to determine the challenges and obstacles in the sector. While the outcome confirms that there are obstacles that affect the aspects, such as time risk, quality of the system used, slow Internet speed, user interface, lack of training, high costs, patient satisfaction, multiple systems used, technical support, computer skills, lack of flexibility, system update, professional skills and knowledge, computer efficiency and quality and accuracy of data.
US Wind power generation has grown significantly over the last decades, both in number and average size of operating turbines. A lower specific power, i.e. larger rotor blades relative to wind turbine capacities, allows to increase capacity factors and to reduce cost. However, this development also reduces system efficiency, i.e. the share of power in the wind flowing through rotor swept areas which is converted to electricity. At the same time, also output power density, the amount of electric energy generated per unit of rotor swept area, may decrease due to the decline of specific power. The precise outcome depends, however, on the interplay of wind resources and wind turbine models. In this study, we present a decomposition of historical US wind power generation data for the period 2001-2021 to study to which extent the decrease in specific power affected system efficiency and output power density. We show that as a result of a decrease in specific power, system efficiency fell and therefore, output power density was reduced during the last decade. Furthermore, we show that the wind available to turbines has increased substantially due to increases in the average hub height of turbines since 2001. However, site quality has slightly decreased during the last 20 years.
Existing approaches to image captioning usually generate the sentence word-by-word from left to right, with the constraint of conditioned on local context including the given image and history generated words. There have been many studies target to make use of global information during decoding, e.g., iterative refinement. However, it is still under-explored how to effectively and efficiently incorporate the future context. To respond to this issue, inspired by that Non-Autoregressive Image Captioning (NAIC) can leverage two-side relation with modified mask operation, we aim to graft this advance to the conventional Autoregressive Image Captioning (AIC) model while maintaining the inference efficiency without extra time cost. Specifically, AIC and NAIC models are first trained combined with shared visual encoders, forcing the visual encoder to contain sufficient and valid future context; then the AIC model is encouraged to capture the causal dynamics of cross-layer interchanging from NAIC model on its unconfident words, which follows a teacher-student paradigm and optimized with the distribution calibration training objective. Empirical evidences demonstrate that our proposed approach clearly surpass the state-of-the-art baselines in both automatic metrics and human evaluations on the MS COCO benchmark. The source code is available at: //github.com/feizc/Future-Caption.
Artificial intelligence (AI) has the potential to greatly improve society, but as with any powerful technology, it comes with heightened risks and responsibilities. Current AI research lacks a systematic discussion of how to manage long-tail risks from AI systems, including speculative long-term risks. Keeping in mind the potential benefits of AI, there is some concern that building ever more intelligent and powerful AI systems could eventually result in systems that are more powerful than us; some say this is like playing with fire and speculate that this could create existential risks (x-risks). To add precision and ground these discussions, we provide a guide for how to analyze AI x-risk, which consists of three parts: First, we review how systems can be made safer today, drawing on time-tested concepts from hazard analysis and systems safety that have been designed to steer large processes in safer directions. Next, we discuss strategies for having long-term impacts on the safety of future systems. Finally, we discuss a crucial concept in making AI systems safer by improving the balance between safety and general capabilities. We hope this document and the presented concepts and tools serve as a useful guide for understanding how to analyze AI x-risk.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
With the rapid development of facial forgery techniques, forgery detection has attracted more and more attention due to security concerns. Existing approaches attempt to use frequency information to mine subtle artifacts under high-quality forged faces. However, the exploitation of frequency information is coarse-grained, and more importantly, their vanilla learning process struggles to extract fine-grained forgery traces. To address this issue, we propose a progressive enhancement learning framework to exploit both the RGB and fine-grained frequency clues. Specifically, we perform a fine-grained decomposition of RGB images to completely decouple the real and fake traces in the frequency space. Subsequently, we propose a progressive enhancement learning framework based on a two-branch network, combined with self-enhancement and mutual-enhancement modules. The self-enhancement module captures the traces in different input spaces based on spatial noise enhancement and channel attention. The Mutual-enhancement module concurrently enhances RGB and frequency features by communicating in the shared spatial dimension. The progressive enhancement process facilitates the learning of discriminative features with fine-grained face forgery clues. Extensive experiments on several datasets show that our method outperforms the state-of-the-art face forgery detection methods.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.