Conducting causal inference with panel data is a core challenge in social science research. We adapt a deep neural architecture for time series forecasting (the N-BEATS algorithm) to more accurately predict the counterfactual evolution of a treated unit had treatment not occurred. Across a range of settings, the resulting estimator ("SyNBEATS") significantly outperforms commonly employed methods (synthetic controls, two-way fixed effects), and attains comparable or more accurate performance compared to recently proposed methods (synthetic difference-in-differences, matrix completion). Our results highlight how advances in the forecasting literature can be harnessed to improve causal inference in panel data settings.
Assistive devices, such as exoskeletons and prostheses, have revolutionized the field of rehabilitation and mobility assistance. Efficiently detecting transitions between different activities, such as walking, stair ascending and descending, and sitting, is crucial for ensuring adaptive control and enhancing user experience. We here present an approach for real-time transition detection, aimed at optimizing the processing-time performance. By establishing activity-specific threshold values through trained machine learning models, we effectively distinguish motion patterns and we identify transition moments between locomotion modes. This threshold-based method improves real-time embedded processing time performance by up to 11 times compared to machine learning approaches. The efficacy of the developed finite-state machine is validated using data collected from three different measurement systems. Moreover, experiments with healthy participants were conducted on an active pelvis orthosis to validate the robustness and reliability of our approach. The proposed algorithm achieved high accuracy in detecting transitions between activities. These promising results show the robustness and reliability of the method, reinforcing its potential for integration into practical applications.
This paper proposes a novel hue-like angular parameter to model the structure of deep convolutional neural network (CNN) activation space, referred to as the {\em activation hue}, for the purpose of regularizing models for more effective learning. The activation hue generalizes the notion of color hue angle in standard 3-channel RGB intensity space to $N$-channel activation space. A series of observations based on nearest neighbor indexing of activation vectors with pre-trained networks indicate that class-informative activations are concentrated about an angle $\theta$ in both the $(x,y)$ image plane and in multi-channel activation space. A regularization term in the form of hue-like angular $\theta$ labels is proposed to complement standard one-hot loss. Training from scratch using combined one-hot + activation hue loss improves classification performance modestly for a wide variety of classification tasks, including ImageNet.
Information geometry is a study of statistical manifolds, that is, spaces of probability distributions from a geometric perspective. Its classical information-theoretic applications relate to statistical concepts such as Fisher information, sufficient statistics, and efficient estimators. Today, information geometry has emerged as an interdisciplinary field that finds applications in diverse areas such as radar sensing, array signal processing, quantum physics, deep learning, and optimal transport. This article presents an overview of essential information geometry to initiate an information theorist, who may be unfamiliar with this exciting area of research. We explain the concepts of divergences on statistical manifolds, generalized notions of distances, orthogonality, and geodesics, thereby paving the way for concrete applications and novel theoretical investigations. We also highlight some recent information-geometric developments, which are of interest to the broader information theory community.
Hybrid model predictive control (MPC) with both continuous and discrete variables is widely applicable to robotic control tasks, especially those involving contact with the environment. Due to the combinatorial complexity, the solving speed of hybrid MPC can be insufficient for real-time applications. In this paper, we proposed a hybrid MPC solver based on Generalized Benders Decomposition (GBD) with continual learning. The algorithm accumulates cutting planes from the invariant dual space of the subproblems. After a short cold-start phase, the accumulated cuts provide warm-starts for the new problem instances to increase the solving speed. Despite the randomly changing environment that the control is unprepared for, the solving speed maintains. We verified our solver on controlling a cart-pole system with randomly moving soft contact walls and show that the solving speed is 2-3 times faster than the off-the-shelf solver Gurobi.
We present GeGnn, a learning-based method for computing the approximate geodesic distance between two arbitrary points on discrete polyhedra surfaces with constant time complexity after fast precomputation. Previous relevant methods either focus on computing the geodesic distance between a single source and all destinations, which has linear complexity at least or require a long precomputation time. Our key idea is to train a graph neural network to embed an input mesh into a high-dimensional embedding space and compute the geodesic distance between a pair of points using the corresponding embedding vectors and a lightweight decoding function. To facilitate the learning of the embedding, we propose novel graph convolution and graph pooling modules that incorporate local geodesic information and are verified to be much more effective than previous designs. After training, our method requires only one forward pass of the network per mesh as precomputation. Then, we can compute the geodesic distance between a pair of points using our decoding function, which requires only several matrix multiplications and can be massively parallelized on GPUs. We verify the efficiency and effectiveness of our method on ShapeNet and demonstrate that our method is faster than existing methods by orders of magnitude while achieving comparable or better accuracy. Additionally, our method exhibits robustness on noisy and incomplete meshes and strong generalization ability on out-of-distribution meshes. The code and pretrained model can be found on //github.com/IntelligentGeometry/GeGnn.
Stochastic learning dynamics based on Langevin or Levy stochastic differential equations (SDEs) in deep neural networks control the variance of noise by varying the size of the mini-batch or directly those of injecting noise. Since the noise variance affects the approximation performance, the design of the additive noise is significant in SDE-based learning and practical implementation. In this paper, we propose an alternative stochastic descent learning equation based on quantized optimization for non-convex objective functions, adopting a stochastic analysis perspective. The proposed method employs a quantized optimization approach that utilizes Langevin SDE dynamics, allowing for controllable noise with an identical distribution without the need for additive noise or adjusting the mini-batch size. Numerical experiments demonstrate the effectiveness of the proposed algorithm on vanilla convolution neural network(CNN) models and the ResNet-50 architecture across various data sets. Furthermore, we provide a simple PyTorch implementation of the proposed algorithm.
This work studies the problem of learning unbiased algorithms from biased feedback for recommendation. We address this problem from a novel distribution shift perspective. Recent works in unbiased recommendation have advanced the state-of-the-art with various techniques such as re-weighting, multi-task learning, and meta-learning. Despite their empirical successes, most of them lack theoretical guarantees, forming non-negligible gaps between theories and recent algorithms. In this paper, we propose a theoretical understanding of why existing unbiased learning objectives work for unbiased recommendation. We establish a close connection between unbiased recommendation and distribution shift, which shows that existing unbiased learning objectives implicitly align biased training and unbiased test distributions. Built upon this connection, we develop two generalization bounds for existing unbiased learning methods and analyze their learning behavior. Besides, as a result of the distribution shift, we further propose a principled framework, Adversarial Self-Training (AST), for unbiased recommendation. Extensive experiments on real-world and semi-synthetic datasets demonstrate the effectiveness of AST.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.